ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncongr1 GIF version

Theorem cncongr1 11995
Description: One direction of the bicondition in cncongr 11997. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
cncongr1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))

Proof of Theorem cncongr1
Dummy variables 𝑘 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zmulcl 9225 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
213adant2 1001 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
3 zmulcl 9225 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
433adant1 1000 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
5 simpl 108 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℕ)
6 congr 11992 . . 3 (((𝐴 · 𝐶) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
72, 4, 5, 6syl2an3an 1280 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
8 simpl 108 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐶 ∈ ℤ)
9 nnz 9191 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
10 nnne0 8866 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
119, 10jca 304 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
1211adantl 275 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
13 eqidd 2158 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))
148, 12, 133jca 1162 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)))
1514ex 114 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝑁 ∈ ℕ → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
16153ad2ant3 1005 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑁 ∈ ℕ → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1716com12 30 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1817adantr 274 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1918impcom 124 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)))
20 divgcdcoprmex 11994 . . . . . 6 ((𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
2119, 20syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
2221adantr 274 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
23 oveq2 5834 . . . . . . . . . 10 (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
24233ad2ant2 1004 . . . . . . . . 9 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
2524adantl 275 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
26 oveq2 5834 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝐴 · 𝐶) = (𝐴 · ((𝐶 gcd 𝑁) · 𝑟)))
27 oveq2 5834 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝐵 · 𝐶) = (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)))
2826, 27oveq12d 5844 . . . . . . . . . 10 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
29283ad2ant1 1003 . . . . . . . . 9 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
3029adantl 275 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
3125, 30eqeq12d 2172 . . . . . . 7 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) ↔ (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)))))
32 simpr 109 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
3332zcnd 9292 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
3433adantr 274 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑘 ∈ ℂ)
35 simp3 984 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
3635adantr 274 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐶 ∈ ℤ)
379ad2antrl 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℤ)
3836, 37gcdcld 11867 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ0)
3938nn0cnd 9150 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℂ)
4039ad2antrr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
41 simpr 109 . . . . . . . . . . . . . 14 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∈ ℤ)
4241zcnd 9292 . . . . . . . . . . . . 13 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∈ ℂ)
4342adantl 275 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℂ)
4434, 40, 43mul12d 8031 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)))
45 simp1 982 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
4645zcnd 9292 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
4746ad3antrrr 484 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐴 ∈ ℂ)
4835ad2antrr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℤ)
495nnzd 9290 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℤ)
5049adantl 275 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℤ)
5150adantr 274 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
5248, 51gcdcld 11867 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℕ0)
5352nn0cnd 9150 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℂ)
5453adantr 274 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
55 simpl 108 . . . . . . . . . . . . . . 15 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑟 ∈ ℤ)
5655zcnd 9292 . . . . . . . . . . . . . 14 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑟 ∈ ℂ)
5756adantl 275 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑟 ∈ ℂ)
5847, 54, 57mul12d 8031 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) = ((𝐶 gcd 𝑁) · (𝐴 · 𝑟)))
59 simp2 983 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
6059zcnd 9292 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
6160ad3antrrr 484 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐵 ∈ ℂ)
6236, 50gcdcld 11867 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ0)
6362nn0cnd 9150 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℂ)
6463ad2antrr 480 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
6561, 64, 57mul12d 8031 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)) = ((𝐶 gcd 𝑁) · (𝐵 · 𝑟)))
6658, 65oveq12d 5844 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))))
6744, 66eqeq12d 2172 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟)))))
6845ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐴 ∈ ℤ)
6955adantl 275 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑟 ∈ ℤ)
7068, 69zmulcld 9297 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℤ)
7170zcnd 9292 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℂ)
7259ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐵 ∈ ℤ)
7372, 69zmulcld 9297 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℤ)
7473zcnd 9292 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℂ)
7564, 71, 74subdid 8293 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))))
7675eqcomd 2163 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
7776eqeq2d 2169 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))) ↔ ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟)))))
7832adantr 274 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑘 ∈ ℤ)
79 simprr 522 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℤ)
8078, 79zmulcld 9297 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · 𝑠) ∈ ℤ)
8180zcnd 9292 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · 𝑠) ∈ ℂ)
82 zmulcl 9225 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐴 · 𝑟) ∈ ℤ)
8382ad2ant2r 501 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℤ)
84 zmulcl 9225 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐵 · 𝑟) ∈ ℤ)
8584ad2ant2lr 502 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℤ)
8683, 85zsubcld 9296 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℤ)
8786zcnd 9292 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ)
8887ex 114 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
89883adant3 1002 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
9089ad2antrr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
9190imp 123 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ)
9210ad2antrl 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ≠ 0)
93 gcd2n0cl 11868 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐶 gcd 𝑁) ∈ ℕ)
9436, 50, 92, 93syl3anc 1220 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ)
9594nnne0d 8883 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ≠ 0)
9695ad2antrr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ≠ 0)
9752adantr 274 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℕ0)
9897nn0zd 9289 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℤ)
99 0zd 9184 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 0 ∈ ℤ)
100 zapne 9243 . . . . . . . . . . . . 13 (((𝐶 gcd 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0))
10198, 99, 100syl2anc 409 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0))
10296, 101mpbird 166 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) # 0)
10381, 91, 64, 102mulcanapd 8539 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
10467, 77, 1033bitrd 213 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
105104adantr 274 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
106 zcn 9177 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
107 zcn 9177 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
108106, 107anim12i 336 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
1091083adant3 1002 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
110109ad2antrr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
111110, 56anim12i 336 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑟 ∈ ℂ))
112 df-3an 965 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑟 ∈ ℂ))
113111, 112sylibr 133 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ))
114 subdir 8265 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → ((𝐴𝐵) · 𝑟) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)))
115113, 114syl 14 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴𝐵) · 𝑟) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)))
116115eqcomd 2163 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) = ((𝐴𝐵) · 𝑟))
117116adantr 274 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) = ((𝐴𝐵) · 𝑟))
118117eqeq2d 2169 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ↔ (𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟)))
1195nncnd 8852 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℂ)
120119adantl 275 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℂ)
121120ad2antrr 480 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑁 ∈ ℂ)
12279zcnd 9292 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℂ)
123121, 122, 40, 102divmulap2d 8701 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠𝑁 = ((𝐶 gcd 𝑁) · 𝑠)))
124 simpll 519 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ))
12569adantr 274 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑟 ∈ ℤ)
1265adantl 275 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℕ)
127 divgcdnnr 11875 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
128126, 36, 127syl2anc 409 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
129128ad3antrrr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
130 eleq1 2220 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑁 / (𝐶 gcd 𝑁)) → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
131130eqcoms 2160 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
132131adantl 275 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
133129, 132mpbird 166 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑠 ∈ ℕ)
134125, 133jca 304 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))
135124, 134jca 304 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)))
136 simpr 109 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑁 / (𝐶 gcd 𝑁)) = 𝑠)
137 nnz 9191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
138137adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
139138anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ))
140139adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ))
141 dvdsmul2 11721 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∥ (𝑘 · 𝑠))
142140, 141syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → 𝑠 ∥ (𝑘 · 𝑠))
143 breq2 3971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝑠 ∥ (𝑘 · 𝑠) ↔ 𝑠 ∥ ((𝐴𝐵) · 𝑟)))
144 zsubcl 9213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
145144zcnd 9292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
146145adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴𝐵) ∈ ℂ)
147 zcn 9177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑟 ∈ ℤ → 𝑟 ∈ ℂ)
148147ad2antrl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → 𝑟 ∈ ℂ)
149148adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → 𝑟 ∈ ℂ)
150146, 149mulcomd 7901 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴𝐵) · 𝑟) = (𝑟 · (𝐴𝐵)))
151150breq2d 3979 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ ((𝐴𝐵) · 𝑟) ↔ 𝑠 ∥ (𝑟 · (𝐴𝐵))))
152137anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
153 gcdcom 11872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑟 gcd 𝑠) = (𝑠 gcd 𝑟))
154152, 153syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑟 gcd 𝑠) = (𝑠 gcd 𝑟))
155154eqeq1d 2166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑟 gcd 𝑠) = 1 ↔ (𝑠 gcd 𝑟) = 1))
156155ad2antll 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 ↔ (𝑠 gcd 𝑟) = 1))
157152adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
158157ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ))
159144, 158anim12i 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴𝐵) ∈ ℤ ∧ (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ)))
160159ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) ∧ (𝐴𝐵) ∈ ℤ))
161 df-3an 965 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) ↔ ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) ∧ (𝐴𝐵) ∈ ℤ))
162160, 161sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
163 coprmdvds 11984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → 𝑠 ∥ (𝐴𝐵)))
164162, 163syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → 𝑠 ∥ (𝐴𝐵)))
165 simprr 522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → 𝑠 ∈ ℕ)
166165anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑠 ∈ ℕ))
167166ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
168 3anass 967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑠 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
169167, 168sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
170 moddvds 11706 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑠) = (𝐵 mod 𝑠) ↔ 𝑠 ∥ (𝐴𝐵)))
171169, 170syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴 mod 𝑠) = (𝐵 mod 𝑠) ↔ 𝑠 ∥ (𝐴𝐵)))
172164, 171sylibrd 168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
173172expcomd 1421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 gcd 𝑟) = 1 → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
174156, 173sylbid 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
175174com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → ((𝑟 gcd 𝑠) = 1 → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
176151, 175sylbid 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ ((𝐴𝐵) · 𝑟) → ((𝑟 gcd 𝑠) = 1 → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
177176com3l 81 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∥ ((𝐴𝐵) · 𝑟) → ((𝑟 gcd 𝑠) = 1 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
178143, 177syl6bi 162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝑠 ∥ (𝑘 · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
179178com14 88 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ (𝑘 · 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
180142, 179mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
181180ex 114 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
1821813adant3 1002 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
183182adantr 274 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
184183impl 378 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
185184adantr 274 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
186185imp 123 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
187 eqtr2 2176 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑀 = 𝑠)
188 oveq2 5834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 = 𝑠 → (𝐴 mod 𝑀) = (𝐴 mod 𝑠))
189 oveq2 5834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 = 𝑠 → (𝐵 mod 𝑀) = (𝐵 mod 𝑠))
190188, 189eqeq12d 2172 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
191187, 190syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
192191ex 114 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
193192eqcoms 2160 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
194193ad2antll 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
195194ad2antrr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
196195imp 123 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
197196adantr 274 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
198186, 197sylibrd 168 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
199198ex 114 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
200135, 136, 199syl2anc 409 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
201200ex 114 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
202123, 201sylbird 169 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
203202com3l 81 . . . . . . . . . . . 12 (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
204203a1i 9 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))))
2052043imp 1176 . . . . . . . . . 10 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
206205impcom 124 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
207118, 206sylbid 149 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
208105, 207sylbid 149 . . . . . . 7 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
20931, 208sylbid 149 . . . . . 6 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
210209ex 114 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
211210rexlimdvva 2582 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
21222, 211mpd 13 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
213212rexlimdva 2574 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
2147, 213sylbid 149 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  wne 2327  wrex 2436   class class class wbr 3967  (class class class)co 5826  cc 7732  0cc0 7734  1c1 7735   · cmul 7739  cmin 8050   # cap 8460   / cdiv 8549  cn 8838  0cn0 9095  cz 9172   mod cmo 10230  cdvds 11694   gcd cgcd 11841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853  ax-caucvg 7854
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-frec 6340  df-sup 6930  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-3 8898  df-4 8899  df-n0 9096  df-z 9173  df-uz 9445  df-q 9535  df-rp 9567  df-fz 9919  df-fzo 10051  df-fl 10178  df-mod 10231  df-seqfrec 10354  df-exp 10428  df-cj 10753  df-re 10754  df-im 10755  df-rsqrt 10909  df-abs 10910  df-dvds 11695  df-gcd 11842
This theorem is referenced by:  cncongr  11997
  Copyright terms: Public domain W3C validator