ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncongr1 GIF version

Theorem cncongr1 12035
Description: One direction of the bicondition in cncongr 12037. Theorem 5.4 in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
cncongr1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))

Proof of Theorem cncongr1
Dummy variables 𝑘 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zmulcl 9244 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
213adant2 1006 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ ℤ)
3 zmulcl 9244 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
433adant1 1005 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 · 𝐶) ∈ ℤ)
5 simpl 108 . . 3 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℕ)
6 congr 12032 . . 3 (((𝐴 · 𝐶) ∈ ℤ ∧ (𝐵 · 𝐶) ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
72, 4, 5, 6syl2an3an 1288 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) ↔ ∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))))
8 simpl 108 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐶 ∈ ℤ)
9 nnz 9210 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
10 nnne0 8885 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
119, 10jca 304 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
1211adantl 275 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0))
13 eqidd 2166 . . . . . . . . . . . 12 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))
148, 12, 133jca 1167 . . . . . . . . . . 11 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)))
1514ex 114 . . . . . . . . . 10 (𝐶 ∈ ℤ → (𝑁 ∈ ℕ → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
16153ad2ant3 1010 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝑁 ∈ ℕ → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1716com12 30 . . . . . . . 8 (𝑁 ∈ ℕ → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1817adantr 274 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁))))
1918impcom 124 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)))
20 divgcdcoprmex 12034 . . . . . 6 ((𝐶 ∈ ℤ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ (𝐶 gcd 𝑁) = (𝐶 gcd 𝑁)) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
2119, 20syl 14 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
2221adantr 274 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1))
23 oveq2 5850 . . . . . . . . . 10 (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
24233ad2ant2 1009 . . . . . . . . 9 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
2524adantl 275 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → (𝑘 · 𝑁) = (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)))
26 oveq2 5850 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝐴 · 𝐶) = (𝐴 · ((𝐶 gcd 𝑁) · 𝑟)))
27 oveq2 5850 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝐵 · 𝐶) = (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)))
2826, 27oveq12d 5860 . . . . . . . . . 10 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
29283ad2ant1 1008 . . . . . . . . 9 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
3029adantl 275 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝐴 · 𝐶) − (𝐵 · 𝐶)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))))
3125, 30eqeq12d 2180 . . . . . . 7 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) ↔ (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)))))
32 simpr 109 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
3332zcnd 9314 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ)
3433adantr 274 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑘 ∈ ℂ)
35 simp3 989 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
3635adantr 274 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝐶 ∈ ℤ)
379ad2antrl 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℤ)
3836, 37gcdcld 11901 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ0)
3938nn0cnd 9169 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℂ)
4039ad2antrr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
41 simpr 109 . . . . . . . . . . . . . 14 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∈ ℤ)
4241zcnd 9314 . . . . . . . . . . . . 13 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∈ ℂ)
4342adantl 275 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℂ)
4434, 40, 43mul12d 8050 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)))
45 simp1 987 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
4645zcnd 9314 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℂ)
4746ad3antrrr 484 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐴 ∈ ℂ)
4835ad2antrr 480 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝐶 ∈ ℤ)
495nnzd 9312 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℤ)
5049adantl 275 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℤ)
5150adantr 274 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → 𝑁 ∈ ℤ)
5248, 51gcdcld 11901 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℕ0)
5352nn0cnd 9169 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐶 gcd 𝑁) ∈ ℂ)
5453adantr 274 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
55 simpl 108 . . . . . . . . . . . . . . 15 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑟 ∈ ℤ)
5655zcnd 9314 . . . . . . . . . . . . . 14 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑟 ∈ ℂ)
5756adantl 275 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑟 ∈ ℂ)
5847, 54, 57mul12d 8050 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) = ((𝐶 gcd 𝑁) · (𝐴 · 𝑟)))
59 simp2 988 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
6059zcnd 9314 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℂ)
6160ad3antrrr 484 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐵 ∈ ℂ)
6236, 50gcdcld 11901 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ0)
6362nn0cnd 9169 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℂ)
6463ad2antrr 480 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℂ)
6561, 64, 57mul12d 8050 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · ((𝐶 gcd 𝑁) · 𝑟)) = ((𝐶 gcd 𝑁) · (𝐵 · 𝑟)))
6658, 65oveq12d 5860 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))))
6744, 66eqeq12d 2180 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟)))))
6845ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐴 ∈ ℤ)
6955adantl 275 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑟 ∈ ℤ)
7068, 69zmulcld 9319 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℤ)
7170zcnd 9314 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℂ)
7259ad3antrrr 484 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝐵 ∈ ℤ)
7372, 69zmulcld 9319 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℤ)
7473zcnd 9314 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℂ)
7564, 71, 74subdid 8312 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))))
7675eqcomd 2171 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
7776eqeq2d 2177 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = (((𝐶 gcd 𝑁) · (𝐴 · 𝑟)) − ((𝐶 gcd 𝑁) · (𝐵 · 𝑟))) ↔ ((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟)))))
7832adantr 274 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑘 ∈ ℤ)
79 simprr 522 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℤ)
8078, 79zmulcld 9319 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · 𝑠) ∈ ℤ)
8180zcnd 9314 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑘 · 𝑠) ∈ ℂ)
82 zmulcl 9244 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐴 · 𝑟) ∈ ℤ)
8382ad2ant2r 501 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 · 𝑟) ∈ ℤ)
84 zmulcl 9244 . . . . . . . . . . . . . . . . . 18 ((𝐵 ∈ ℤ ∧ 𝑟 ∈ ℤ) → (𝐵 · 𝑟) ∈ ℤ)
8584ad2ant2lr 502 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐵 · 𝑟) ∈ ℤ)
8683, 85zsubcld 9318 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℤ)
8786zcnd 9314 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ)
8887ex 114 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
89883adant3 1007 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
9089ad2antrr 480 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ))
9190imp 123 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ∈ ℂ)
9210ad2antrl 482 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ≠ 0)
93 gcd2n0cl 11902 . . . . . . . . . . . . . . 15 ((𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝐶 gcd 𝑁) ∈ ℕ)
9436, 50, 92, 93syl3anc 1228 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ∈ ℕ)
9594nnne0d 8902 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝐶 gcd 𝑁) ≠ 0)
9695ad2antrr 480 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ≠ 0)
9752adantr 274 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℕ0)
9897nn0zd 9311 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) ∈ ℤ)
99 0zd 9203 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 0 ∈ ℤ)
100 zapne 9265 . . . . . . . . . . . . 13 (((𝐶 gcd 𝑁) ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0))
10198, 99, 100syl2anc 409 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 gcd 𝑁) # 0 ↔ (𝐶 gcd 𝑁) ≠ 0))
10296, 101mpbird 166 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐶 gcd 𝑁) # 0)
10381, 91, 64, 102mulcanapd 8558 . . . . . . . . . 10 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (((𝐶 gcd 𝑁) · (𝑘 · 𝑠)) = ((𝐶 gcd 𝑁) · ((𝐴 · 𝑟) − (𝐵 · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
10467, 77, 1033bitrd 213 . . . . . . . . 9 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
105104adantr 274 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) ↔ (𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟))))
106 zcn 9196 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
107 zcn 9196 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
108106, 107anim12i 336 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
1091083adant3 1007 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
110109ad2antrr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
111110, 56anim12i 336 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑟 ∈ ℂ))
112 df-3an 970 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) ↔ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝑟 ∈ ℂ))
113111, 112sylibr 133 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ))
114 subdir 8284 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ) → ((𝐴𝐵) · 𝑟) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)))
115113, 114syl 14 . . . . . . . . . . . 12 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴𝐵) · 𝑟) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)))
116115eqcomd 2171 . . . . . . . . . . 11 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) = ((𝐴𝐵) · 𝑟))
117116adantr 274 . . . . . . . . . 10 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝐴 · 𝑟) − (𝐵 · 𝑟)) = ((𝐴𝐵) · 𝑟))
118117eqeq2d 2177 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)) ↔ (𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟)))
1195nncnd 8871 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁))) → 𝑁 ∈ ℂ)
120119adantl 275 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℂ)
121120ad2antrr 480 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑁 ∈ ℂ)
12279zcnd 9314 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → 𝑠 ∈ ℂ)
123121, 122, 40, 102divmulap2d 8720 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠𝑁 = ((𝐶 gcd 𝑁) · 𝑠)))
124 simpll 519 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ))
12569adantr 274 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑟 ∈ ℤ)
1265adantl 275 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → 𝑁 ∈ ℕ)
127 divgcdnnr 11909 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
128126, 36, 127syl2anc 409 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
129128ad3antrrr 484 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ)
130 eleq1 2229 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝑁 / (𝐶 gcd 𝑁)) → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
131130eqcoms 2168 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
132131adantl 275 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑠 ∈ ℕ ↔ (𝑁 / (𝐶 gcd 𝑁)) ∈ ℕ))
133129, 132mpbird 166 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑠 ∈ ℕ)
134125, 133jca 304 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))
135124, 134jca 304 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)))
136 simpr 109 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → (𝑁 / (𝐶 gcd 𝑁)) = 𝑠)
137 nnz 9210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 ∈ ℕ → 𝑠 ∈ ℤ)
138137adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → 𝑠 ∈ ℤ)
139138anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ))
140139adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ))
141 dvdsmul2 11754 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ) → 𝑠 ∥ (𝑘 · 𝑠))
142140, 141syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → 𝑠 ∥ (𝑘 · 𝑠))
143 breq2 3986 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝑠 ∥ (𝑘 · 𝑠) ↔ 𝑠 ∥ ((𝐴𝐵) · 𝑟)))
144 zsubcl 9232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
145144zcnd 9314 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
146145adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴𝐵) ∈ ℂ)
147 zcn 9196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑟 ∈ ℤ → 𝑟 ∈ ℂ)
148147ad2antrl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → 𝑟 ∈ ℂ)
149148adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → 𝑟 ∈ ℂ)
150146, 149mulcomd 7920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴𝐵) · 𝑟) = (𝑟 · (𝐴𝐵)))
151150breq2d 3994 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ ((𝐴𝐵) · 𝑟) ↔ 𝑠 ∥ (𝑟 · (𝐴𝐵))))
152137anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
153 gcdcom 11906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ) → (𝑟 gcd 𝑠) = (𝑠 gcd 𝑟))
154152, 153syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → (𝑟 gcd 𝑠) = (𝑠 gcd 𝑟))
155154eqeq1d 2174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ) → ((𝑟 gcd 𝑠) = 1 ↔ (𝑠 gcd 𝑟) = 1))
156155ad2antll 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 ↔ (𝑠 gcd 𝑟) = 1))
157152adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ))
158157ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ))
159144, 158anim12i 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴𝐵) ∈ ℤ ∧ (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ)))
160159ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) ∧ (𝐴𝐵) ∈ ℤ))
161 df-3an 970 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) ↔ ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ) ∧ (𝐴𝐵) ∈ ℤ))
162160, 161sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ))
163 coprmdvds 12024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ (𝐴𝐵) ∈ ℤ) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → 𝑠 ∥ (𝐴𝐵)))
164162, 163syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → 𝑠 ∥ (𝐴𝐵)))
165 simprr 522 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → 𝑠 ∈ ℕ)
166165anim2i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑠 ∈ ℕ))
167166ancomd 265 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
168 3anass 972 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ↔ (𝑠 ∈ ℕ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ)))
169167, 168sylibr 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ))
170 moddvds 11739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 mod 𝑠) = (𝐵 mod 𝑠) ↔ 𝑠 ∥ (𝐴𝐵)))
171169, 170syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝐴 mod 𝑠) = (𝐵 mod 𝑠) ↔ 𝑠 ∥ (𝐴𝐵)))
172164, 171sylibrd 168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 ∥ (𝑟 · (𝐴𝐵)) ∧ (𝑠 gcd 𝑟) = 1) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
173172expcomd 1429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑠 gcd 𝑟) = 1 → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
174156, 173sylbid 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
175174com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ (𝑟 · (𝐴𝐵)) → ((𝑟 gcd 𝑠) = 1 → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
176151, 175sylbid 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ ((𝐴𝐵) · 𝑟) → ((𝑟 gcd 𝑠) = 1 → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
177176com3l 81 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∥ ((𝐴𝐵) · 𝑟) → ((𝑟 gcd 𝑠) = 1 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
178143, 177syl6bi 162 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝑠 ∥ (𝑘 · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
179178com14 88 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → (𝑠 ∥ (𝑘 · 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
180142, 179mpd 13 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ))) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
181180ex 114 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
1821813adant3 1007 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
183182adantr 274 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑘 ∈ ℤ ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))))
184183impl 378 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
185184adantr 274 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
186185imp 123 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
187 eqtr2 2184 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → 𝑀 = 𝑠)
188 oveq2 5850 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 = 𝑠 → (𝐴 mod 𝑀) = (𝐴 mod 𝑠))
189 oveq2 5850 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑀 = 𝑠 → (𝐵 mod 𝑀) = (𝐵 mod 𝑠))
190188, 189eqeq12d 2180 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
191187, 190syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
192191ex 114 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 / (𝐶 gcd 𝑁)) = 𝑀 → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
193192eqcoms 2168 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 = (𝑁 / (𝐶 gcd 𝑁)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
194193ad2antll 483 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
195194ad2antrr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠))))
196195imp 123 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
197196adantr 274 . . . . . . . . . . . . . . . . . 18 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝐴 mod 𝑀) = (𝐵 mod 𝑀) ↔ (𝐴 mod 𝑠) = (𝐵 mod 𝑠)))
198186, 197sylibrd 168 . . . . . . . . . . . . . . . . 17 (((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
199198ex 114 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
200135, 136, 199syl2anc 409 . . . . . . . . . . . . . . 15 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝑁 / (𝐶 gcd 𝑁)) = 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
201200ex 114 . . . . . . . . . . . . . 14 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑁 / (𝐶 gcd 𝑁)) = 𝑠 → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
202123, 201sylbird 169 . . . . . . . . . . . . 13 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
203202com3l 81 . . . . . . . . . . . 12 (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))))
204203a1i 9 . . . . . . . . . . 11 (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) → (𝑁 = ((𝐶 gcd 𝑁) · 𝑠) → ((𝑟 gcd 𝑠) = 1 → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))))
2052043imp 1183 . . . . . . . . . 10 ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
206205impcom 124 . . . . . . . . 9 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴𝐵) · 𝑟) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
207118, 206sylbid 149 . . . . . . . 8 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑠) = ((𝐴 · 𝑟) − (𝐵 · 𝑟)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
208105, 207sylbid 149 . . . . . . 7 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · ((𝐶 gcd 𝑁) · 𝑠)) = ((𝐴 · ((𝐶 gcd 𝑁) · 𝑟)) − (𝐵 · ((𝐶 gcd 𝑁) · 𝑟))) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
20931, 208sylbid 149 . . . . . 6 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) ∧ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1)) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
210209ex 114 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) ∧ (𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ)) → ((𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
211210rexlimdvva 2591 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → (∃𝑟 ∈ ℤ ∃𝑠 ∈ ℤ (𝐶 = ((𝐶 gcd 𝑁) · 𝑟) ∧ 𝑁 = ((𝐶 gcd 𝑁) · 𝑠) ∧ (𝑟 gcd 𝑠) = 1) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀))))
21222, 211mpd 13 . . 3 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) ∧ 𝑘 ∈ ℤ) → ((𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
213212rexlimdva 2583 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (∃𝑘 ∈ ℤ (𝑘 · 𝑁) = ((𝐴 · 𝐶) − (𝐵 · 𝐶)) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
2147, 213sylbid 149 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ (𝑁 ∈ ℕ ∧ 𝑀 = (𝑁 / (𝐶 gcd 𝑁)))) → (((𝐴 · 𝐶) mod 𝑁) = ((𝐵 · 𝐶) mod 𝑁) → (𝐴 mod 𝑀) = (𝐵 mod 𝑀)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wcel 2136  wne 2336  wrex 2445   class class class wbr 3982  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   · cmul 7758  cmin 8069   # cap 8479   / cdiv 8568  cn 8857  0cn0 9114  cz 9191   mod cmo 10257  cdvds 11727   gcd cgcd 11875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876
This theorem is referenced by:  cncongr  12037
  Copyright terms: Public domain W3C validator