ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvap0 GIF version

Theorem expcnvap0 11443
Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
Hypotheses
Ref Expression
expcnvap0.1 (𝜑𝐴 ∈ ℂ)
expcnvap0.2 (𝜑 → (abs‘𝐴) < 1)
expcnvap0.0 (𝜑𝐴 # 0)
Assertion
Ref Expression
expcnvap0 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvap0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9501 . . 3 ℕ = (ℤ‘1)
2 1zzd 9218 . . 3 (𝜑 → 1 ∈ ℤ)
3 expcnvap0.2 . . . . . . . 8 (𝜑 → (abs‘𝐴) < 1)
4 expcnvap0.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
5 expcnvap0.0 . . . . . . . . . 10 (𝜑𝐴 # 0)
64, 5absrpclapd 11130 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℝ+)
76reclt1d 9646 . . . . . . . 8 (𝜑 → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
83, 7mpbid 146 . . . . . . 7 (𝜑 → 1 < (1 / (abs‘𝐴)))
9 1re 7898 . . . . . . . 8 1 ∈ ℝ
106rpreccld 9643 . . . . . . . . 9 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ+)
1110rpred 9632 . . . . . . . 8 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ)
12 difrp 9628 . . . . . . . 8 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
139, 11, 12sylancr 411 . . . . . . 7 (𝜑 → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
148, 13mpbid 146 . . . . . 6 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
1514rpreccld 9643 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
1615rpcnd 9634 . . . 4 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
17 divcnv 11438 . . . 4 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
1816, 17syl 14 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
19 nnex 8863 . . . . 5 ℕ ∈ V
2019mptex 5711 . . . 4 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
2120a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
22 simpr 109 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2316adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
2422nncnd 8871 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
2522nnap0d 8903 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 # 0)
2623, 24, 25divclapd 8686 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ)
27 oveq2 5850 . . . . . 6 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
28 eqid 2165 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
2927, 28fvmptg 5562 . . . . 5 ((𝑘 ∈ ℕ ∧ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3022, 26, 29syl2anc 409 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3115rpred 9632 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
32 nndivre 8893 . . . . 5 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3331, 32sylan 281 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3430, 33eqeltrd 2243 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
356adantr 274 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℝ+)
3635rpcnd 9634 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℂ)
37 nnnn0 9121 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3837adantl 275 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
3936, 38expcld 10588 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
40 oveq2 5850 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
41 eqid 2165 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
4240, 41fvmptg 5562 . . . . . 6 ((𝑘 ∈ ℕ ∧ ((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
4322, 39, 42syl2anc 409 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
44 nnz 9210 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
45 rpexpcl 10474 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
466, 44, 45syl2an 287 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
4743, 46eqeltrd 2243 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
4847rpred 9632 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
49 nnrp 9599 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
50 rpmulcl 9614 . . . . . . 7 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5114, 49, 50syl2an 287 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5251rpred 9632 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
53 peano2re 8034 . . . . . . . . 9 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
55 rpexpcl 10474 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5610, 44, 55syl2an 287 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5756rpred 9632 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
5852lep1d 8826 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
5911adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
6010rpge0d 9636 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (abs‘𝐴)))
6160adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
62 bernneq2 10576 . . . . . . . . 9 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6359, 38, 61, 62syl3anc 1228 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6452, 54, 57, 58, 63letrd 8022 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
656rpcnd 9634 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℂ)
666rpap0d 9638 . . . . . . . 8 (𝜑 → (abs‘𝐴) # 0)
67 exprecap 10496 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) # 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6865, 66, 44, 67syl2an3an 1288 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6964, 68breqtrd 4008 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
7051, 46, 69lerec2d 9654 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7114rpcnd 9634 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℂ)
7214rpap0d 9638 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) # 0)
7371, 72jca 304 . . . . . 6 (𝜑 → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0))
74 nncn 8865 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75 nnap0 8886 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 # 0)
7674, 75jca 304 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 # 0))
77 recdivap2 8621 . . . . . 6 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 # 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7873, 76, 77syl2an 287 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7970, 78breqtrrd 4010 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
8079, 43, 303brtr4d 4014 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
8147rpge0d 9636 . . 3 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
821, 2, 18, 21, 34, 48, 80, 81climsqz2 11277 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
83 nn0ex 9120 . . . . 5 0 ∈ V
8483mptex 5711 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
8584a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
864adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
8786, 38expcld 10588 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
88 oveq2 5850 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
89 eqid 2165 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
9088, 89fvmptg 5562 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
9138, 87, 90syl2anc 409 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
92 expcl 10473 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
934, 37, 92syl2an 287 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
9491, 93eqeltrd 2243 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
95 absexp 11021 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
964, 37, 95syl2an 287 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
9791fveq2d 5490 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
9896, 97, 433eqtr4rd 2209 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
991, 2, 85, 21, 94, 98climabs0 11248 . 2 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
10082, 99mpbird 166 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  Vcvv 2726   class class class wbr 3982  cmpt 4043  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  0cc0 7753  1c1 7754   + caddc 7756   · cmul 7758   < clt 7933  cle 7934  cmin 8069   # cap 8479   / cdiv 8568  cn 8857  0cn0 9114  cz 9191  +crp 9589  cexp 10454  abscabs 10939  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  expcnvre  11444
  Copyright terms: Public domain W3C validator