ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvap0 GIF version

Theorem expcnvap0 11648
Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
Hypotheses
Ref Expression
expcnvap0.1 (𝜑𝐴 ∈ ℂ)
expcnvap0.2 (𝜑 → (abs‘𝐴) < 1)
expcnvap0.0 (𝜑𝐴 # 0)
Assertion
Ref Expression
expcnvap0 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvap0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9631 . . 3 ℕ = (ℤ‘1)
2 1zzd 9347 . . 3 (𝜑 → 1 ∈ ℤ)
3 expcnvap0.2 . . . . . . . 8 (𝜑 → (abs‘𝐴) < 1)
4 expcnvap0.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
5 expcnvap0.0 . . . . . . . . . 10 (𝜑𝐴 # 0)
64, 5absrpclapd 11335 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℝ+)
76reclt1d 9779 . . . . . . . 8 (𝜑 → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
83, 7mpbid 147 . . . . . . 7 (𝜑 → 1 < (1 / (abs‘𝐴)))
9 1re 8020 . . . . . . . 8 1 ∈ ℝ
106rpreccld 9776 . . . . . . . . 9 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ+)
1110rpred 9765 . . . . . . . 8 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ)
12 difrp 9761 . . . . . . . 8 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
139, 11, 12sylancr 414 . . . . . . 7 (𝜑 → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
148, 13mpbid 147 . . . . . 6 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
1514rpreccld 9776 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
1615rpcnd 9767 . . . 4 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
17 divcnv 11643 . . . 4 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
1816, 17syl 14 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
19 nnex 8990 . . . . 5 ℕ ∈ V
2019mptex 5785 . . . 4 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
2120a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
22 simpr 110 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2316adantr 276 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
2422nncnd 8998 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
2522nnap0d 9030 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 # 0)
2623, 24, 25divclapd 8811 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ)
27 oveq2 5927 . . . . . 6 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
28 eqid 2193 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
2927, 28fvmptg 5634 . . . . 5 ((𝑘 ∈ ℕ ∧ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3022, 26, 29syl2anc 411 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3115rpred 9765 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
32 nndivre 9020 . . . . 5 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3331, 32sylan 283 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3430, 33eqeltrd 2270 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
356adantr 276 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℝ+)
3635rpcnd 9767 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℂ)
37 nnnn0 9250 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3837adantl 277 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
3936, 38expcld 10747 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
40 oveq2 5927 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
41 eqid 2193 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
4240, 41fvmptg 5634 . . . . . 6 ((𝑘 ∈ ℕ ∧ ((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
4322, 39, 42syl2anc 411 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
44 nnz 9339 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
45 rpexpcl 10632 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
466, 44, 45syl2an 289 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
4743, 46eqeltrd 2270 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
4847rpred 9765 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
49 nnrp 9732 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
50 rpmulcl 9747 . . . . . . 7 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5114, 49, 50syl2an 289 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5251rpred 9765 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
53 peano2re 8157 . . . . . . . . 9 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
55 rpexpcl 10632 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5610, 44, 55syl2an 289 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5756rpred 9765 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
5852lep1d 8952 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
5911adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
6010rpge0d 9769 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (abs‘𝐴)))
6160adantr 276 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
62 bernneq2 10735 . . . . . . . . 9 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6359, 38, 61, 62syl3anc 1249 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6452, 54, 57, 58, 63letrd 8145 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
656rpcnd 9767 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℂ)
666rpap0d 9771 . . . . . . . 8 (𝜑 → (abs‘𝐴) # 0)
67 exprecap 10654 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) # 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6865, 66, 44, 67syl2an3an 1309 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6964, 68breqtrd 4056 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
7051, 46, 69lerec2d 9787 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7114rpcnd 9767 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℂ)
7214rpap0d 9771 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) # 0)
7371, 72jca 306 . . . . . 6 (𝜑 → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0))
74 nncn 8992 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75 nnap0 9013 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 # 0)
7674, 75jca 306 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 # 0))
77 recdivap2 8746 . . . . . 6 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 # 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7873, 76, 77syl2an 289 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7970, 78breqtrrd 4058 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
8079, 43, 303brtr4d 4062 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
8147rpge0d 9769 . . 3 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
821, 2, 18, 21, 34, 48, 80, 81climsqz2 11482 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
83 nn0ex 9249 . . . . 5 0 ∈ V
8483mptex 5785 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
8584a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
864adantr 276 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
8786, 38expcld 10747 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
88 oveq2 5927 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
89 eqid 2193 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
9088, 89fvmptg 5634 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
9138, 87, 90syl2anc 411 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
92 expcl 10631 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
934, 37, 92syl2an 289 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
9491, 93eqeltrd 2270 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
95 absexp 11226 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
964, 37, 95syl2an 289 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
9791fveq2d 5559 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
9896, 97, 433eqtr4rd 2237 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
991, 2, 85, 21, 94, 98climabs0 11453 . 2 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
10082, 99mpbird 167 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760   class class class wbr 4030  cmpt 4091  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874  1c1 7875   + caddc 7877   · cmul 7879   < clt 8056  cle 8057  cmin 8192   # cap 8602   / cdiv 8693  cn 8984  0cn0 9243  cz 9320  +crp 9722  cexp 10612  abscabs 11144  cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425
This theorem is referenced by:  expcnvre  11649
  Copyright terms: Public domain W3C validator