| Step | Hyp | Ref
| Expression |
| 1 | | nnuz 9637 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
| 2 | | 1zzd 9353 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
| 3 | | expcnvap0.2 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐴) < 1) |
| 4 | | expcnvap0.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 5 | | expcnvap0.0 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 # 0) |
| 6 | 4, 5 | absrpclapd 11353 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ+) |
| 7 | 6 | reclt1d 9785 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘𝐴) < 1 ↔ 1 < (1 /
(abs‘𝐴)))) |
| 8 | 3, 7 | mpbid 147 |
. . . . . . 7
⊢ (𝜑 → 1 < (1 /
(abs‘𝐴))) |
| 9 | | 1re 8025 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
| 10 | 6 | rpreccld 9782 |
. . . . . . . . 9
⊢ (𝜑 → (1 / (abs‘𝐴)) ∈
ℝ+) |
| 11 | 10 | rpred 9771 |
. . . . . . . 8
⊢ (𝜑 → (1 / (abs‘𝐴)) ∈
ℝ) |
| 12 | | difrp 9767 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 /
(abs‘𝐴)) ↔ ((1 /
(abs‘𝐴)) − 1)
∈ ℝ+)) |
| 13 | 9, 11, 12 | sylancr 414 |
. . . . . . 7
⊢ (𝜑 → (1 < (1 /
(abs‘𝐴)) ↔ ((1 /
(abs‘𝐴)) − 1)
∈ ℝ+)) |
| 14 | 8, 13 | mpbid 147 |
. . . . . 6
⊢ (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈
ℝ+) |
| 15 | 14 | rpreccld 9782 |
. . . . 5
⊢ (𝜑 → (1 / ((1 /
(abs‘𝐴)) − 1))
∈ ℝ+) |
| 16 | 15 | rpcnd 9773 |
. . . 4
⊢ (𝜑 → (1 / ((1 /
(abs‘𝐴)) − 1))
∈ ℂ) |
| 17 | | divcnv 11662 |
. . . 4
⊢ ((1 / ((1
/ (abs‘𝐴)) −
1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛)) ⇝
0) |
| 18 | 16, 17 | syl 14 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛)) ⇝
0) |
| 19 | | nnex 8996 |
. . . . 5
⊢ ℕ
∈ V |
| 20 | 19 | mptex 5788 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) ∈ V |
| 21 | 20 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V) |
| 22 | | simpr 110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
| 23 | 16 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / ((1 /
(abs‘𝐴)) − 1))
∈ ℂ) |
| 24 | 22 | nncnd 9004 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
| 25 | 22 | nnap0d 9036 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 # 0) |
| 26 | 23, 24, 25 | divclapd 8817 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) ∈
ℂ) |
| 27 | | oveq2 5930 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
| 28 | | eqid 2196 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ ((1 /
((1 / (abs‘𝐴))
− 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 /
((1 / (abs‘𝐴))
− 1)) / 𝑛)) |
| 29 | 27, 28 | fvmptg 5637 |
. . . . 5
⊢ ((𝑘 ∈ ℕ ∧ ((1 / ((1
/ (abs‘𝐴)) −
1)) / 𝑘) ∈ ℂ)
→ ((𝑛 ∈ ℕ
↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
| 30 | 22, 26, 29 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
| 31 | 15 | rpred 9771 |
. . . . 5
⊢ (𝜑 → (1 / ((1 /
(abs‘𝐴)) − 1))
∈ ℝ) |
| 32 | | nndivre 9026 |
. . . . 5
⊢ (((1 /
((1 / (abs‘𝐴))
− 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) ∈
ℝ) |
| 33 | 31, 32 | sylan 283 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) ∈
ℝ) |
| 34 | 30, 33 | eqeltrd 2273 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘) ∈
ℝ) |
| 35 | 6 | adantr 276 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘𝐴) ∈
ℝ+) |
| 36 | 35 | rpcnd 9773 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘𝐴) ∈
ℂ) |
| 37 | | nnnn0 9256 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
| 38 | 37 | adantl 277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
| 39 | 36, 38 | expcld 10765 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ) |
| 40 | | oveq2 5930 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘)) |
| 41 | | eqid 2196 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) |
| 42 | 40, 41 | fvmptg 5637 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧
((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
| 43 | 22, 39, 42 | syl2anc 411 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
| 44 | | nnz 9345 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
| 45 | | rpexpcl 10650 |
. . . . . 6
⊢
(((abs‘𝐴)
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈
ℝ+) |
| 46 | 6, 44, 45 | syl2an 289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈
ℝ+) |
| 47 | 43, 46 | eqeltrd 2273 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈
ℝ+) |
| 48 | 47 | rpred 9771 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ) |
| 49 | | nnrp 9738 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
| 50 | | rpmulcl 9753 |
. . . . . . 7
⊢ ((((1 /
(abs‘𝐴)) − 1)
∈ ℝ+ ∧ 𝑘 ∈ ℝ+) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ+) |
| 51 | 14, 49, 50 | syl2an 289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ+) |
| 52 | 51 | rpred 9771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ) |
| 53 | | peano2re 8162 |
. . . . . . . . 9
⊢ ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈ ℝ
→ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ) |
| 54 | 52, 53 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) + 1) ∈
ℝ) |
| 55 | | rpexpcl 10650 |
. . . . . . . . . 10
⊢ (((1 /
(abs‘𝐴)) ∈
ℝ+ ∧ 𝑘
∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈
ℝ+) |
| 56 | 10, 44, 55 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) ∈
ℝ+) |
| 57 | 56 | rpred 9771 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) ∈
ℝ) |
| 58 | 52 | lep1d 8958 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) +
1)) |
| 59 | 11 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈
ℝ) |
| 60 | 10 | rpge0d 9775 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (1 /
(abs‘𝐴))) |
| 61 | 60 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 /
(abs‘𝐴))) |
| 62 | | bernneq2 10753 |
. . . . . . . . 9
⊢ (((1 /
(abs‘𝐴)) ∈
ℝ ∧ 𝑘 ∈
ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
| 63 | 59, 38, 61, 62 | syl3anc 1249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) + 1) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
| 64 | 52, 54, 57, 58, 63 | letrd 8150 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
| 65 | 6 | rpcnd 9773 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐴) ∈
ℂ) |
| 66 | 6 | rpap0d 9777 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐴) # 0) |
| 67 | | exprecap 10672 |
. . . . . . . 8
⊢
(((abs‘𝐴)
∈ ℂ ∧ (abs‘𝐴) # 0 ∧ 𝑘 ∈ ℤ) → ((1 /
(abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘))) |
| 68 | 65, 66, 44, 67 | syl2an3an 1309 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘))) |
| 69 | 64, 68 | breqtrd 4059 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ (1 /
((abs‘𝐴)↑𝑘))) |
| 70 | 51, 46, 69 | lerec2d 9793 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘))) |
| 71 | 14 | rpcnd 9773 |
. . . . . . 7
⊢ (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈
ℂ) |
| 72 | 14 | rpap0d 9777 |
. . . . . . 7
⊢ (𝜑 → ((1 / (abs‘𝐴)) − 1) #
0) |
| 73 | 71, 72 | jca 306 |
. . . . . 6
⊢ (𝜑 → (((1 / (abs‘𝐴)) − 1) ∈ ℂ
∧ ((1 / (abs‘𝐴))
− 1) # 0)) |
| 74 | | nncn 8998 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
| 75 | | nnap0 9019 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 # 0) |
| 76 | 74, 75 | jca 306 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 # 0)) |
| 77 | | recdivap2 8752 |
. . . . . 6
⊢ (((((1 /
(abs‘𝐴)) − 1)
∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 # 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘))) |
| 78 | 73, 76, 77 | syl2an 289 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) = (1 / (((1 /
(abs‘𝐴)) − 1)
· 𝑘))) |
| 79 | 70, 78 | breqtrrd 4061 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
| 80 | 79, 43, 30 | 3brtr4d 4065 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘)) |
| 81 | 47 | rpge0d 9775 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))‘𝑘)) |
| 82 | 1, 2, 18, 21, 34, 48, 80, 81 | climsqz2 11501 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) |
| 83 | | nn0ex 9255 |
. . . . 5
⊢
ℕ0 ∈ V |
| 84 | 83 | mptex 5788 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) ∈ V |
| 85 | 84 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ∈ V) |
| 86 | 4 | adantr 276 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) |
| 87 | 86, 38 | expcld 10765 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
| 88 | | oveq2 5930 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
| 89 | | eqid 2196 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
| 90 | 88, 89 | fvmptg 5637 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 91 | 38, 87, 90 | syl2anc 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
| 92 | | expcl 10649 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
| 93 | 4, 37, 92 | syl2an 289 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
| 94 | 91, 93 | eqeltrd 2273 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) ∈ ℂ) |
| 95 | | absexp 11244 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
| 96 | 4, 37, 95 | syl2an 289 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
| 97 | 91 | fveq2d 5562 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘)) = (abs‘(𝐴↑𝑘))) |
| 98 | 96, 97, 43 | 3eqtr4rd 2240 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘))) |
| 99 | 1, 2, 85, 21, 94, 98 | climabs0 11472 |
. 2
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)) |
| 100 | 82, 99 | mpbird 167 |
1
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |