ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvap0 GIF version

Theorem expcnvap0 11264
Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
Hypotheses
Ref Expression
expcnvap0.1 (𝜑𝐴 ∈ ℂ)
expcnvap0.2 (𝜑 → (abs‘𝐴) < 1)
expcnvap0.0 (𝜑𝐴 # 0)
Assertion
Ref Expression
expcnvap0 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvap0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9354 . . 3 ℕ = (ℤ‘1)
2 1zzd 9074 . . 3 (𝜑 → 1 ∈ ℤ)
3 expcnvap0.2 . . . . . . . 8 (𝜑 → (abs‘𝐴) < 1)
4 expcnvap0.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
5 expcnvap0.0 . . . . . . . . . 10 (𝜑𝐴 # 0)
64, 5absrpclapd 10953 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℝ+)
76reclt1d 9490 . . . . . . . 8 (𝜑 → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
83, 7mpbid 146 . . . . . . 7 (𝜑 → 1 < (1 / (abs‘𝐴)))
9 1re 7758 . . . . . . . 8 1 ∈ ℝ
106rpreccld 9487 . . . . . . . . 9 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ+)
1110rpred 9476 . . . . . . . 8 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ)
12 difrp 9473 . . . . . . . 8 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
139, 11, 12sylancr 410 . . . . . . 7 (𝜑 → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
148, 13mpbid 146 . . . . . 6 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
1514rpreccld 9487 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
1615rpcnd 9478 . . . 4 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
17 divcnv 11259 . . . 4 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
1816, 17syl 14 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
19 nnex 8719 . . . . 5 ℕ ∈ V
2019mptex 5639 . . . 4 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
2120a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
22 simpr 109 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2316adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
2422nncnd 8727 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
2522nnap0d 8759 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 # 0)
2623, 24, 25divclapd 8543 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ)
27 oveq2 5775 . . . . . 6 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
28 eqid 2137 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
2927, 28fvmptg 5490 . . . . 5 ((𝑘 ∈ ℕ ∧ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3022, 26, 29syl2anc 408 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3115rpred 9476 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
32 nndivre 8749 . . . . 5 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3331, 32sylan 281 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3430, 33eqeltrd 2214 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
356adantr 274 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℝ+)
3635rpcnd 9478 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℂ)
37 nnnn0 8977 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3837adantl 275 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
3936, 38expcld 10417 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
40 oveq2 5775 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
41 eqid 2137 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
4240, 41fvmptg 5490 . . . . . 6 ((𝑘 ∈ ℕ ∧ ((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
4322, 39, 42syl2anc 408 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
44 nnz 9066 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
45 rpexpcl 10305 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
466, 44, 45syl2an 287 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
4743, 46eqeltrd 2214 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
4847rpred 9476 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
49 nnrp 9444 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
50 rpmulcl 9459 . . . . . . 7 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5114, 49, 50syl2an 287 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5251rpred 9476 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
53 peano2re 7891 . . . . . . . . 9 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
55 rpexpcl 10305 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5610, 44, 55syl2an 287 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5756rpred 9476 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
5852lep1d 8682 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
5911adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
6010rpge0d 9480 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (abs‘𝐴)))
6160adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
62 bernneq2 10406 . . . . . . . . 9 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6359, 38, 61, 62syl3anc 1216 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6452, 54, 57, 58, 63letrd 7879 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
656rpcnd 9478 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℂ)
666rpap0d 9482 . . . . . . . 8 (𝜑 → (abs‘𝐴) # 0)
67 exprecap 10327 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) # 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6865, 66, 44, 67syl2an3an 1276 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6964, 68breqtrd 3949 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
7051, 46, 69lerec2d 9498 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7114rpcnd 9478 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℂ)
7214rpap0d 9482 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) # 0)
7371, 72jca 304 . . . . . 6 (𝜑 → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0))
74 nncn 8721 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75 nnap0 8742 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 # 0)
7674, 75jca 304 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 # 0))
77 recdivap2 8478 . . . . . 6 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 # 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7873, 76, 77syl2an 287 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7970, 78breqtrrd 3951 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
8079, 43, 303brtr4d 3955 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
8147rpge0d 9480 . . 3 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
821, 2, 18, 21, 34, 48, 80, 81climsqz2 11098 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
83 nn0ex 8976 . . . . 5 0 ∈ V
8483mptex 5639 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
8584a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
864adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
8786, 38expcld 10417 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
88 oveq2 5775 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
89 eqid 2137 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
9088, 89fvmptg 5490 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
9138, 87, 90syl2anc 408 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
92 expcl 10304 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
934, 37, 92syl2an 287 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
9491, 93eqeltrd 2214 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
95 absexp 10844 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
964, 37, 95syl2an 287 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
9791fveq2d 5418 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
9896, 97, 433eqtr4rd 2181 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
991, 2, 85, 21, 94, 98climabs0 11069 . 2 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
10082, 99mpbird 166 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  Vcvv 2681   class class class wbr 3924  cmpt 3984  cfv 5118  (class class class)co 5767  cc 7611  cr 7612  0cc0 7613  1c1 7614   + caddc 7616   · cmul 7618   < clt 7793  cle 7794  cmin 7926   # cap 8336   / cdiv 8425  cn 8713  0cn0 8970  cz 9047  +crp 9434  cexp 10285  abscabs 10762  cli 11040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041
This theorem is referenced by:  expcnvre  11265
  Copyright terms: Public domain W3C validator