Step | Hyp | Ref
| Expression |
1 | | nnuz 9522 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
2 | | 1zzd 9239 |
. . 3
⊢ (𝜑 → 1 ∈
ℤ) |
3 | | expcnvap0.2 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐴) < 1) |
4 | | expcnvap0.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℂ) |
5 | | expcnvap0.0 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 # 0) |
6 | 4, 5 | absrpclapd 11152 |
. . . . . . . . 9
⊢ (𝜑 → (abs‘𝐴) ∈
ℝ+) |
7 | 6 | reclt1d 9667 |
. . . . . . . 8
⊢ (𝜑 → ((abs‘𝐴) < 1 ↔ 1 < (1 /
(abs‘𝐴)))) |
8 | 3, 7 | mpbid 146 |
. . . . . . 7
⊢ (𝜑 → 1 < (1 /
(abs‘𝐴))) |
9 | | 1re 7919 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
10 | 6 | rpreccld 9664 |
. . . . . . . . 9
⊢ (𝜑 → (1 / (abs‘𝐴)) ∈
ℝ+) |
11 | 10 | rpred 9653 |
. . . . . . . 8
⊢ (𝜑 → (1 / (abs‘𝐴)) ∈
ℝ) |
12 | | difrp 9649 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 /
(abs‘𝐴)) ↔ ((1 /
(abs‘𝐴)) − 1)
∈ ℝ+)) |
13 | 9, 11, 12 | sylancr 412 |
. . . . . . 7
⊢ (𝜑 → (1 < (1 /
(abs‘𝐴)) ↔ ((1 /
(abs‘𝐴)) − 1)
∈ ℝ+)) |
14 | 8, 13 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈
ℝ+) |
15 | 14 | rpreccld 9664 |
. . . . 5
⊢ (𝜑 → (1 / ((1 /
(abs‘𝐴)) − 1))
∈ ℝ+) |
16 | 15 | rpcnd 9655 |
. . . 4
⊢ (𝜑 → (1 / ((1 /
(abs‘𝐴)) − 1))
∈ ℂ) |
17 | | divcnv 11460 |
. . . 4
⊢ ((1 / ((1
/ (abs‘𝐴)) −
1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛)) ⇝
0) |
18 | 16, 17 | syl 14 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛)) ⇝
0) |
19 | | nnex 8884 |
. . . . 5
⊢ ℕ
∈ V |
20 | 19 | mptex 5722 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) ∈ V |
21 | 20 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V) |
22 | | simpr 109 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ) |
23 | 16 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / ((1 /
(abs‘𝐴)) − 1))
∈ ℂ) |
24 | 22 | nncnd 8892 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ) |
25 | 22 | nnap0d 8924 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 # 0) |
26 | 23, 24, 25 | divclapd 8707 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) ∈
ℂ) |
27 | | oveq2 5861 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
28 | | eqid 2170 |
. . . . . 6
⊢ (𝑛 ∈ ℕ ↦ ((1 /
((1 / (abs‘𝐴))
− 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 /
((1 / (abs‘𝐴))
− 1)) / 𝑛)) |
29 | 27, 28 | fvmptg 5572 |
. . . . 5
⊢ ((𝑘 ∈ ℕ ∧ ((1 / ((1
/ (abs‘𝐴)) −
1)) / 𝑘) ∈ ℂ)
→ ((𝑛 ∈ ℕ
↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
30 | 22, 26, 29 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
31 | 15 | rpred 9653 |
. . . . 5
⊢ (𝜑 → (1 / ((1 /
(abs‘𝐴)) − 1))
∈ ℝ) |
32 | | nndivre 8914 |
. . . . 5
⊢ (((1 /
((1 / (abs‘𝐴))
− 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) ∈
ℝ) |
33 | 31, 32 | sylan 281 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) ∈
ℝ) |
34 | 30, 33 | eqeltrd 2247 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘) ∈
ℝ) |
35 | 6 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘𝐴) ∈
ℝ+) |
36 | 35 | rpcnd 9655 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘𝐴) ∈
ℂ) |
37 | | nnnn0 9142 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
38 | 37 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
39 | 36, 38 | expcld 10609 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ) |
40 | | oveq2 5861 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘)) |
41 | | eqid 2170 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) |
42 | 40, 41 | fvmptg 5572 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧
((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
43 | 22, 39, 42 | syl2anc 409 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘)) |
44 | | nnz 9231 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℤ) |
45 | | rpexpcl 10495 |
. . . . . 6
⊢
(((abs‘𝐴)
∈ ℝ+ ∧ 𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈
ℝ+) |
46 | 6, 44, 45 | syl2an 287 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈
ℝ+) |
47 | 43, 46 | eqeltrd 2247 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈
ℝ+) |
48 | 47 | rpred 9653 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ) |
49 | | nnrp 9620 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ+) |
50 | | rpmulcl 9635 |
. . . . . . 7
⊢ ((((1 /
(abs‘𝐴)) − 1)
∈ ℝ+ ∧ 𝑘 ∈ ℝ+) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ+) |
51 | 14, 49, 50 | syl2an 287 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ+) |
52 | 51 | rpred 9653 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈
ℝ) |
53 | | peano2re 8055 |
. . . . . . . . 9
⊢ ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) ∈ ℝ
→ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ) |
54 | 52, 53 | syl 14 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) + 1) ∈
ℝ) |
55 | | rpexpcl 10495 |
. . . . . . . . . 10
⊢ (((1 /
(abs‘𝐴)) ∈
ℝ+ ∧ 𝑘
∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈
ℝ+) |
56 | 10, 44, 55 | syl2an 287 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) ∈
ℝ+) |
57 | 56 | rpred 9653 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) ∈
ℝ) |
58 | 52 | lep1d 8847 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) +
1)) |
59 | 11 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈
ℝ) |
60 | 10 | rpge0d 9657 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ≤ (1 /
(abs‘𝐴))) |
61 | 60 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ (1 /
(abs‘𝐴))) |
62 | | bernneq2 10597 |
. . . . . . . . 9
⊢ (((1 /
(abs‘𝐴)) ∈
ℝ ∧ 𝑘 ∈
ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
63 | 59, 38, 61, 62 | syl3anc 1233 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((((1 /
(abs‘𝐴)) − 1)
· 𝑘) + 1) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
64 | 52, 54, 57, 58, 63 | letrd 8043 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ ((1 /
(abs‘𝐴))↑𝑘)) |
65 | 6 | rpcnd 9655 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐴) ∈
ℂ) |
66 | 6 | rpap0d 9659 |
. . . . . . . 8
⊢ (𝜑 → (abs‘𝐴) # 0) |
67 | | exprecap 10517 |
. . . . . . . 8
⊢
(((abs‘𝐴)
∈ ℂ ∧ (abs‘𝐴) # 0 ∧ 𝑘 ∈ ℤ) → ((1 /
(abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘))) |
68 | 65, 66, 44, 67 | syl2an3an 1293 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 /
(abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘))) |
69 | 64, 68 | breqtrd 4015 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (((1 /
(abs‘𝐴)) − 1)
· 𝑘) ≤ (1 /
((abs‘𝐴)↑𝑘))) |
70 | 51, 46, 69 | lerec2d 9675 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘))) |
71 | 14 | rpcnd 9655 |
. . . . . . 7
⊢ (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈
ℂ) |
72 | 14 | rpap0d 9659 |
. . . . . . 7
⊢ (𝜑 → ((1 / (abs‘𝐴)) − 1) #
0) |
73 | 71, 72 | jca 304 |
. . . . . 6
⊢ (𝜑 → (((1 / (abs‘𝐴)) − 1) ∈ ℂ
∧ ((1 / (abs‘𝐴))
− 1) # 0)) |
74 | | nncn 8886 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
75 | | nnap0 8907 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 # 0) |
76 | 74, 75 | jca 304 |
. . . . . 6
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 # 0)) |
77 | | recdivap2 8642 |
. . . . . 6
⊢ (((((1 /
(abs‘𝐴)) − 1)
∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 # 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘))) |
78 | 73, 76, 77 | syl2an 287 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑘) = (1 / (((1 /
(abs‘𝐴)) − 1)
· 𝑘))) |
79 | 70, 78 | breqtrrd 4017 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘)) |
80 | 79, 43, 30 | 3brtr4d 4021 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 /
(abs‘𝐴)) − 1))
/ 𝑛))‘𝑘)) |
81 | 47 | rpge0d 9657 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦
((abs‘𝐴)↑𝑛))‘𝑘)) |
82 | 1, 2, 18, 21, 34, 48, 80, 81 | climsqz2 11299 |
. 2
⊢ (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0) |
83 | | nn0ex 9141 |
. . . . 5
⊢
ℕ0 ∈ V |
84 | 83 | mptex 5722 |
. . . 4
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) ∈ V |
85 | 84 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ∈ V) |
86 | 4 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → 𝐴 ∈ ℂ) |
87 | 86, 38 | expcld 10609 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
88 | | oveq2 5861 |
. . . . . 6
⊢ (𝑛 = 𝑘 → (𝐴↑𝑛) = (𝐴↑𝑘)) |
89 | | eqid 2170 |
. . . . . 6
⊢ (𝑛 ∈ ℕ0
↦ (𝐴↑𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) |
90 | 88, 89 | fvmptg 5572 |
. . . . 5
⊢ ((𝑘 ∈ ℕ0
∧ (𝐴↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
91 | 38, 87, 90 | syl2anc 409 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) = (𝐴↑𝑘)) |
92 | | expcl 10494 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐴↑𝑘) ∈
ℂ) |
93 | 4, 37, 92 | syl2an 287 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) ∈ ℂ) |
94 | 91, 93 | eqeltrd 2247 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘) ∈ ℂ) |
95 | | absexp 11043 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
96 | 4, 37, 95 | syl2an 287 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘(𝐴↑𝑘)) = ((abs‘𝐴)↑𝑘)) |
97 | 91 | fveq2d 5500 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0
↦ (𝐴↑𝑛))‘𝑘)) = (abs‘(𝐴↑𝑘))) |
98 | 96, 97, 43 | 3eqtr4rd 2214 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛))‘𝑘))) |
99 | 1, 2, 85, 21, 94, 98 | climabs0 11270 |
. 2
⊢ (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)) |
100 | 82, 99 | mpbird 166 |
1
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴↑𝑛)) ⇝ 0) |