Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvap0 GIF version

Theorem expcnvap0 11323
 Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
Hypotheses
Ref Expression
expcnvap0.1 (𝜑𝐴 ∈ ℂ)
expcnvap0.2 (𝜑 → (abs‘𝐴) < 1)
expcnvap0.0 (𝜑𝐴 # 0)
Assertion
Ref Expression
expcnvap0 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvap0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9405 . . 3 ℕ = (ℤ‘1)
2 1zzd 9125 . . 3 (𝜑 → 1 ∈ ℤ)
3 expcnvap0.2 . . . . . . . 8 (𝜑 → (abs‘𝐴) < 1)
4 expcnvap0.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
5 expcnvap0.0 . . . . . . . . . 10 (𝜑𝐴 # 0)
64, 5absrpclapd 11012 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℝ+)
76reclt1d 9547 . . . . . . . 8 (𝜑 → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
83, 7mpbid 146 . . . . . . 7 (𝜑 → 1 < (1 / (abs‘𝐴)))
9 1re 7809 . . . . . . . 8 1 ∈ ℝ
106rpreccld 9544 . . . . . . . . 9 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ+)
1110rpred 9533 . . . . . . . 8 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ)
12 difrp 9529 . . . . . . . 8 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
139, 11, 12sylancr 411 . . . . . . 7 (𝜑 → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
148, 13mpbid 146 . . . . . 6 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
1514rpreccld 9544 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
1615rpcnd 9535 . . . 4 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
17 divcnv 11318 . . . 4 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
1816, 17syl 14 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
19 nnex 8770 . . . . 5 ℕ ∈ V
2019mptex 5655 . . . 4 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
2120a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
22 simpr 109 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2316adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
2422nncnd 8778 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
2522nnap0d 8810 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 # 0)
2623, 24, 25divclapd 8594 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ)
27 oveq2 5791 . . . . . 6 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
28 eqid 2140 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
2927, 28fvmptg 5506 . . . . 5 ((𝑘 ∈ ℕ ∧ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3022, 26, 29syl2anc 409 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3115rpred 9533 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
32 nndivre 8800 . . . . 5 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3331, 32sylan 281 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3430, 33eqeltrd 2217 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
356adantr 274 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℝ+)
3635rpcnd 9535 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℂ)
37 nnnn0 9028 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3837adantl 275 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
3936, 38expcld 10475 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
40 oveq2 5791 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
41 eqid 2140 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
4240, 41fvmptg 5506 . . . . . 6 ((𝑘 ∈ ℕ ∧ ((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
4322, 39, 42syl2anc 409 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
44 nnz 9117 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
45 rpexpcl 10363 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
466, 44, 45syl2an 287 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
4743, 46eqeltrd 2217 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
4847rpred 9533 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
49 nnrp 9500 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
50 rpmulcl 9515 . . . . . . 7 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5114, 49, 50syl2an 287 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5251rpred 9533 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
53 peano2re 7942 . . . . . . . . 9 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
55 rpexpcl 10363 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5610, 44, 55syl2an 287 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5756rpred 9533 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
5852lep1d 8733 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
5911adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
6010rpge0d 9537 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (abs‘𝐴)))
6160adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
62 bernneq2 10464 . . . . . . . . 9 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6359, 38, 61, 62syl3anc 1217 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6452, 54, 57, 58, 63letrd 7930 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
656rpcnd 9535 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℂ)
666rpap0d 9539 . . . . . . . 8 (𝜑 → (abs‘𝐴) # 0)
67 exprecap 10385 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) # 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6865, 66, 44, 67syl2an3an 1277 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6964, 68breqtrd 3963 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
7051, 46, 69lerec2d 9555 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7114rpcnd 9535 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℂ)
7214rpap0d 9539 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) # 0)
7371, 72jca 304 . . . . . 6 (𝜑 → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0))
74 nncn 8772 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75 nnap0 8793 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 # 0)
7674, 75jca 304 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 # 0))
77 recdivap2 8529 . . . . . 6 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 # 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7873, 76, 77syl2an 287 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7970, 78breqtrrd 3965 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
8079, 43, 303brtr4d 3969 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
8147rpge0d 9537 . . 3 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
821, 2, 18, 21, 34, 48, 80, 81climsqz2 11157 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
83 nn0ex 9027 . . . . 5 0 ∈ V
8483mptex 5655 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
8584a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
864adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
8786, 38expcld 10475 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
88 oveq2 5791 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
89 eqid 2140 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
9088, 89fvmptg 5506 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
9138, 87, 90syl2anc 409 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
92 expcl 10362 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
934, 37, 92syl2an 287 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
9491, 93eqeltrd 2217 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
95 absexp 10903 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
964, 37, 95syl2an 287 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
9791fveq2d 5434 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
9896, 97, 433eqtr4rd 2184 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
991, 2, 85, 21, 94, 98climabs0 11128 . 2 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
10082, 99mpbird 166 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1332   ∈ wcel 1481  Vcvv 2690   class class class wbr 3938   ↦ cmpt 3998  ‘cfv 5132  (class class class)co 5783  ℂcc 7662  ℝcr 7663  0cc0 7664  1c1 7665   + caddc 7667   · cmul 7669   < clt 7844   ≤ cle 7845   − cmin 7977   # cap 8387   / cdiv 8476  ℕcn 8764  ℕ0cn0 9021  ℤcz 9098  ℝ+crp 9490  ↑cexp 10343  abscabs 10821   ⇝ cli 11099 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4052  ax-sep 4055  ax-nul 4063  ax-pow 4107  ax-pr 4140  ax-un 4364  ax-setind 4461  ax-iinf 4511  ax-cnex 7755  ax-resscn 7756  ax-1cn 7757  ax-1re 7758  ax-icn 7759  ax-addcl 7760  ax-addrcl 7761  ax-mulcl 7762  ax-mulrcl 7763  ax-addcom 7764  ax-mulcom 7765  ax-addass 7766  ax-mulass 7767  ax-distr 7768  ax-i2m1 7769  ax-0lt1 7770  ax-1rid 7771  ax-0id 7772  ax-rnegex 7773  ax-precex 7774  ax-cnre 7775  ax-pre-ltirr 7776  ax-pre-ltwlin 7777  ax-pre-lttrn 7778  ax-pre-apti 7779  ax-pre-ltadd 7780  ax-pre-mulgt0 7781  ax-pre-mulext 7782  ax-arch 7783  ax-caucvg 7784 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2692  df-sbc 2915  df-csb 3009  df-dif 3079  df-un 3081  df-in 3083  df-ss 3090  df-nul 3370  df-if 3481  df-pw 3518  df-sn 3539  df-pr 3540  df-op 3542  df-uni 3746  df-int 3781  df-iun 3824  df-br 3939  df-opab 3999  df-mpt 4000  df-tr 4036  df-id 4224  df-po 4227  df-iso 4228  df-iord 4297  df-on 4299  df-ilim 4300  df-suc 4302  df-iom 4514  df-xp 4554  df-rel 4555  df-cnv 4556  df-co 4557  df-dm 4558  df-rn 4559  df-res 4560  df-ima 4561  df-iota 5097  df-fun 5134  df-fn 5135  df-f 5136  df-f1 5137  df-fo 5138  df-f1o 5139  df-fv 5140  df-riota 5739  df-ov 5786  df-oprab 5787  df-mpo 5788  df-1st 6047  df-2nd 6048  df-recs 6211  df-frec 6297  df-pnf 7846  df-mnf 7847  df-xr 7848  df-ltxr 7849  df-le 7850  df-sub 7979  df-neg 7980  df-reap 8381  df-ap 8388  df-div 8477  df-inn 8765  df-2 8823  df-3 8824  df-4 8825  df-n0 9022  df-z 9099  df-uz 9371  df-rp 9491  df-seqfrec 10270  df-exp 10344  df-cj 10666  df-re 10667  df-im 10668  df-rsqrt 10822  df-abs 10823  df-clim 11100 This theorem is referenced by:  expcnvre  11324
 Copyright terms: Public domain W3C validator