ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcnvap0 GIF version

Theorem expcnvap0 11465
Description: A sequence of powers of a complex number 𝐴 with absolute value smaller than 1 converges to zero. (Contributed by NM, 8-May-2006.) (Revised by Jim Kingdon, 23-Oct-2022.)
Hypotheses
Ref Expression
expcnvap0.1 (𝜑𝐴 ∈ ℂ)
expcnvap0.2 (𝜑 → (abs‘𝐴) < 1)
expcnvap0.0 (𝜑𝐴 # 0)
Assertion
Ref Expression
expcnvap0 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem expcnvap0
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nnuz 9522 . . 3 ℕ = (ℤ‘1)
2 1zzd 9239 . . 3 (𝜑 → 1 ∈ ℤ)
3 expcnvap0.2 . . . . . . . 8 (𝜑 → (abs‘𝐴) < 1)
4 expcnvap0.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
5 expcnvap0.0 . . . . . . . . . 10 (𝜑𝐴 # 0)
64, 5absrpclapd 11152 . . . . . . . . 9 (𝜑 → (abs‘𝐴) ∈ ℝ+)
76reclt1d 9667 . . . . . . . 8 (𝜑 → ((abs‘𝐴) < 1 ↔ 1 < (1 / (abs‘𝐴))))
83, 7mpbid 146 . . . . . . 7 (𝜑 → 1 < (1 / (abs‘𝐴)))
9 1re 7919 . . . . . . . 8 1 ∈ ℝ
106rpreccld 9664 . . . . . . . . 9 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ+)
1110rpred 9653 . . . . . . . 8 (𝜑 → (1 / (abs‘𝐴)) ∈ ℝ)
12 difrp 9649 . . . . . . . 8 ((1 ∈ ℝ ∧ (1 / (abs‘𝐴)) ∈ ℝ) → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
139, 11, 12sylancr 412 . . . . . . 7 (𝜑 → (1 < (1 / (abs‘𝐴)) ↔ ((1 / (abs‘𝐴)) − 1) ∈ ℝ+))
148, 13mpbid 146 . . . . . 6 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℝ+)
1514rpreccld 9664 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ+)
1615rpcnd 9655 . . . 4 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
17 divcnv 11460 . . . 4 ((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
1816, 17syl 14 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) ⇝ 0)
19 nnex 8884 . . . . 5 ℕ ∈ V
2019mptex 5722 . . . 4 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V
2120a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ∈ V)
22 simpr 109 . . . . 5 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
2316adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℂ)
2422nncnd 8892 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
2522nnap0d 8924 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝑘 # 0)
2623, 24, 25divclapd 8707 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ)
27 oveq2 5861 . . . . . 6 (𝑛 = 𝑘 → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
28 eqid 2170 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))
2927, 28fvmptg 5572 . . . . 5 ((𝑘 ∈ ℕ ∧ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3022, 26, 29syl2anc 409 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) = ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
3115rpred 9653 . . . . 5 (𝜑 → (1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ)
32 nndivre 8914 . . . . 5 (((1 / ((1 / (abs‘𝐴)) − 1)) ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3331, 32sylan 281 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) ∈ ℝ)
3430, 33eqeltrd 2247 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘) ∈ ℝ)
356adantr 274 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℝ+)
3635rpcnd 9655 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (abs‘𝐴) ∈ ℂ)
37 nnnn0 9142 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3837adantl 275 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
3936, 38expcld 10609 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℂ)
40 oveq2 5861 . . . . . . 7 (𝑛 = 𝑘 → ((abs‘𝐴)↑𝑛) = ((abs‘𝐴)↑𝑘))
41 eqid 2170 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) = (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))
4240, 41fvmptg 5572 . . . . . 6 ((𝑘 ∈ ℕ ∧ ((abs‘𝐴)↑𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
4322, 39, 42syl2anc 409 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = ((abs‘𝐴)↑𝑘))
44 nnz 9231 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
45 rpexpcl 10495 . . . . . 6 (((abs‘𝐴) ∈ ℝ+𝑘 ∈ ℤ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
466, 44, 45syl2an 287 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ∈ ℝ+)
4743, 46eqeltrd 2247 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ+)
4847rpred 9653 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ∈ ℝ)
49 nnrp 9620 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
50 rpmulcl 9635 . . . . . . 7 ((((1 / (abs‘𝐴)) − 1) ∈ ℝ+𝑘 ∈ ℝ+) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5114, 49, 50syl2an 287 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ+)
5251rpred 9653 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ)
53 peano2re 8055 . . . . . . . . 9 ((((1 / (abs‘𝐴)) − 1) · 𝑘) ∈ ℝ → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
5452, 53syl 14 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ∈ ℝ)
55 rpexpcl 10495 . . . . . . . . . 10 (((1 / (abs‘𝐴)) ∈ ℝ+𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5610, 44, 55syl2an 287 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ+)
5756rpred 9653 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) ∈ ℝ)
5852lep1d 8847 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1))
5911adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1 / (abs‘𝐴)) ∈ ℝ)
6010rpge0d 9657 . . . . . . . . . 10 (𝜑 → 0 ≤ (1 / (abs‘𝐴)))
6160adantr 274 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 0 ≤ (1 / (abs‘𝐴)))
62 bernneq2 10597 . . . . . . . . 9 (((1 / (abs‘𝐴)) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / (abs‘𝐴))) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6359, 38, 61, 62syl3anc 1233 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((((1 / (abs‘𝐴)) − 1) · 𝑘) + 1) ≤ ((1 / (abs‘𝐴))↑𝑘))
6452, 54, 57, 58, 63letrd 8043 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ ((1 / (abs‘𝐴))↑𝑘))
656rpcnd 9655 . . . . . . . 8 (𝜑 → (abs‘𝐴) ∈ ℂ)
666rpap0d 9659 . . . . . . . 8 (𝜑 → (abs‘𝐴) # 0)
67 exprecap 10517 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) # 0 ∧ 𝑘 ∈ ℤ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6865, 66, 44, 67syl2an3an 1293 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / (abs‘𝐴))↑𝑘) = (1 / ((abs‘𝐴)↑𝑘)))
6964, 68breqtrd 4015 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (((1 / (abs‘𝐴)) − 1) · 𝑘) ≤ (1 / ((abs‘𝐴)↑𝑘)))
7051, 46, 69lerec2d 9675 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7114rpcnd 9655 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) ∈ ℂ)
7214rpap0d 9659 . . . . . . 7 (𝜑 → ((1 / (abs‘𝐴)) − 1) # 0)
7371, 72jca 304 . . . . . 6 (𝜑 → (((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0))
74 nncn 8886 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
75 nnap0 8907 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 # 0)
7674, 75jca 304 . . . . . 6 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 # 0))
77 recdivap2 8642 . . . . . 6 (((((1 / (abs‘𝐴)) − 1) ∈ ℂ ∧ ((1 / (abs‘𝐴)) − 1) # 0) ∧ (𝑘 ∈ ℂ ∧ 𝑘 # 0)) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7873, 76, 77syl2an 287 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘) = (1 / (((1 / (abs‘𝐴)) − 1) · 𝑘)))
7970, 78breqtrrd 4017 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((abs‘𝐴)↑𝑘) ≤ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑘))
8079, 43, 303brtr4d 4021 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) ≤ ((𝑛 ∈ ℕ ↦ ((1 / ((1 / (abs‘𝐴)) − 1)) / 𝑛))‘𝑘))
8147rpge0d 9657 . . 3 ((𝜑𝑘 ∈ ℕ) → 0 ≤ ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘))
821, 2, 18, 21, 34, 48, 80, 81climsqz2 11299 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0)
83 nn0ex 9141 . . . . 5 0 ∈ V
8483mptex 5722 . . . 4 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V
8584a1i 9 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ∈ V)
864adantr 274 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℂ)
8786, 38expcld 10609 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
88 oveq2 5861 . . . . . 6 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
89 eqid 2170 . . . . . 6 (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) = (𝑛 ∈ ℕ0 ↦ (𝐴𝑛))
9088, 89fvmptg 5572 . . . . 5 ((𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ∈ ℂ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
9138, 87, 90syl2anc 409 . . . 4 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) = (𝐴𝑘))
92 expcl 10494 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
934, 37, 92syl2an 287 . . . 4 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
9491, 93eqeltrd 2247 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘) ∈ ℂ)
95 absexp 11043 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
964, 37, 95syl2an 287 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐴𝑘)) = ((abs‘𝐴)↑𝑘))
9791fveq2d 5500 . . . 4 ((𝜑𝑘 ∈ ℕ) → (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)) = (abs‘(𝐴𝑘)))
9896, 97, 433eqtr4rd 2214 . . 3 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛))‘𝑘) = (abs‘((𝑛 ∈ ℕ0 ↦ (𝐴𝑛))‘𝑘)))
991, 2, 85, 21, 94, 98climabs0 11270 . 2 (𝜑 → ((𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0 ↔ (𝑛 ∈ ℕ ↦ ((abs‘𝐴)↑𝑛)) ⇝ 0))
10082, 99mpbird 166 1 (𝜑 → (𝑛 ∈ ℕ0 ↦ (𝐴𝑛)) ⇝ 0)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730   class class class wbr 3989  cmpt 4050  cfv 5198  (class class class)co 5853  cc 7772  cr 7773  0cc0 7774  1c1 7775   + caddc 7777   · cmul 7779   < clt 7954  cle 7955  cmin 8090   # cap 8500   / cdiv 8589  cn 8878  0cn0 9135  cz 9212  +crp 9610  cexp 10475  abscabs 10961  cli 11241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242
This theorem is referenced by:  expcnvre  11466
  Copyright terms: Public domain W3C validator