| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imim12d | GIF version | ||
| Description: Deduction combining antecedents and consequents. (Contributed by NM, 7-Aug-1994.) (Proof shortened by O'Cat, 30-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| imim12d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| imim12d.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) | 
| Ref | Expression | 
|---|---|
| imim12d | ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imim12d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | imim12d.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | 2 | imim2d 54 | . 2 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜒 → 𝜏))) | 
| 4 | 1, 3 | syl5d 68 | 1 ⊢ (𝜑 → ((𝜒 → 𝜃) → (𝜓 → 𝜏))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: imim1d 75 equveli 1773 hbsb4t 2032 mo23 2086 rspcimdv 2869 r19.29uz 11157 txlm 14515 metcnpi3 14753 addcncntoplem 14797 cnplimcim 14903 setindis 15613 bdsetindis 15615 bj-findis 15625 | 
| Copyright terms: Public domain | W3C validator |