ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim12d GIF version

Theorem imim12d 74
Description: Deduction combining antecedents and consequents. (Contributed by NM, 7-Aug-1994.) (Proof shortened by O'Cat, 30-Oct-2011.)
Hypotheses
Ref Expression
imim12d.1 (𝜑 → (𝜓𝜒))
imim12d.2 (𝜑 → (𝜃𝜏))
Assertion
Ref Expression
imim12d (𝜑 → ((𝜒𝜃) → (𝜓𝜏)))

Proof of Theorem imim12d
StepHypRef Expression
1 imim12d.1 . 2 (𝜑 → (𝜓𝜒))
2 imim12d.2 . . 3 (𝜑 → (𝜃𝜏))
32imim2d 54 . 2 (𝜑 → ((𝜒𝜃) → (𝜒𝜏)))
41, 3syl5d 68 1 (𝜑 → ((𝜒𝜃) → (𝜓𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  imim1d  75  equveli  1747  hbsb4t  2001  mo23  2055  rspcimdv  2831  r19.29uz  10934  txlm  12929  metcnpi3  13167  addcncntoplem  13201  cnplimcim  13286  setindis  13859  bdsetindis  13861  bj-findis  13871
  Copyright terms: Public domain W3C validator