ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass3 GIF version

Theorem funimass3 5753
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5752 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funimass4 5686 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssel 3218 . . . . . 6 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
3 fvimacnv 5752 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
43ex 115 . . . . . 6 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵))))
52, 4syl9r 73 . . . . 5 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))))
65imp31 256 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
76ralbidva 2526 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
81, 7bitrd 188 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
9 dfss3 3213 . 2 (𝐴 ⊆ (𝐹𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵))
108, 9bitr4di 198 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  wral 2508  wss 3197  ccnv 4718  dom cdm 4719  cima 4722  Fun wfun 5312  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  funimass5  5754  funconstss  5755  fimacnv  5766  iscnp3  14885  cnpnei  14901  cncnp  14912
  Copyright terms: Public domain W3C validator