ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass3 GIF version

Theorem funimass3 5609
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. Raph Levien remarks: "Likely this could be proved directly, and fvimacnv 5608 would be the special case of 𝐴 being a singleton, but it works this way round too." (Contributed by Raph Levien, 20-Nov-2006.)
Assertion
Ref Expression
funimass3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 funimass4 5545 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
2 ssel 3141 . . . . . 6 (𝐴 ⊆ dom 𝐹 → (𝑥𝐴𝑥 ∈ dom 𝐹))
3 fvimacnv 5608 . . . . . . 7 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
43ex 114 . . . . . 6 (Fun 𝐹 → (𝑥 ∈ dom 𝐹 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵))))
52, 4syl9r 73 . . . . 5 (Fun 𝐹 → (𝐴 ⊆ dom 𝐹 → (𝑥𝐴 → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))))
65imp31 254 . . . 4 (((Fun 𝐹𝐴 ⊆ dom 𝐹) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ 𝐵𝑥 ∈ (𝐹𝐵)))
76ralbidva 2466 . . 3 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
81, 7bitrd 187 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵)))
9 dfss3 3137 . 2 (𝐴 ⊆ (𝐹𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (𝐹𝐵))
108, 9bitr4di 197 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  wral 2448  wss 3121  ccnv 4608  dom cdm 4609  cima 4612  Fun wfun 5190  cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-fv 5204
This theorem is referenced by:  funimass5  5610  funconstss  5611  fimacnv  5622  iscnp3  12956  cnpnei  12972  cncnp  12983
  Copyright terms: Public domain W3C validator