| Step | Hyp | Ref
 | Expression | 
| 1 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑥 = 1 → (𝑧 < 𝑥 ↔ 𝑧 < 1)) | 
| 2 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = 1 → (𝑥 − 𝑧) = (1 − 𝑧)) | 
| 3 | 2 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑥 = 1 → ((𝑥 − 𝑧) ∈ ℕ ↔ (1 − 𝑧) ∈
ℕ)) | 
| 4 | 1, 3 | imbi12d 234 | 
. . . . 5
⊢ (𝑥 = 1 → ((𝑧 < 𝑥 → (𝑥 − 𝑧) ∈ ℕ) ↔ (𝑧 < 1 → (1 − 𝑧) ∈ ℕ))) | 
| 5 | 4 | ralbidv 2497 | 
. . . 4
⊢ (𝑥 = 1 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥 − 𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 1 → (1 − 𝑧) ∈
ℕ))) | 
| 6 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑧 < 𝑥 ↔ 𝑧 < 𝑦)) | 
| 7 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 − 𝑧) = (𝑦 − 𝑧)) | 
| 8 | 7 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝑥 − 𝑧) ∈ ℕ ↔ (𝑦 − 𝑧) ∈ ℕ)) | 
| 9 | 6, 8 | imbi12d 234 | 
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑧 < 𝑥 → (𝑥 − 𝑧) ∈ ℕ) ↔ (𝑧 < 𝑦 → (𝑦 − 𝑧) ∈ ℕ))) | 
| 10 | 9 | ralbidv 2497 | 
. . . 4
⊢ (𝑥 = 𝑦 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥 − 𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝑦 → (𝑦 − 𝑧) ∈ ℕ))) | 
| 11 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → (𝑧 < 𝑥 ↔ 𝑧 < (𝑦 + 1))) | 
| 12 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝑥 − 𝑧) = ((𝑦 + 1) − 𝑧)) | 
| 13 | 12 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 − 𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ)) | 
| 14 | 11, 13 | imbi12d 234 | 
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → ((𝑧 < 𝑥 → (𝑥 − 𝑧) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))) | 
| 15 | 14 | ralbidv 2497 | 
. . . 4
⊢ (𝑥 = (𝑦 + 1) → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥 − 𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))) | 
| 16 |   | breq2 4037 | 
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑧 < 𝑥 ↔ 𝑧 < 𝐵)) | 
| 17 |   | oveq1 5929 | 
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑥 − 𝑧) = (𝐵 − 𝑧)) | 
| 18 | 17 | eleq1d 2265 | 
. . . . . 6
⊢ (𝑥 = 𝐵 → ((𝑥 − 𝑧) ∈ ℕ ↔ (𝐵 − 𝑧) ∈ ℕ)) | 
| 19 | 16, 18 | imbi12d 234 | 
. . . . 5
⊢ (𝑥 = 𝐵 → ((𝑧 < 𝑥 → (𝑥 − 𝑧) ∈ ℕ) ↔ (𝑧 < 𝐵 → (𝐵 − 𝑧) ∈ ℕ))) | 
| 20 | 19 | ralbidv 2497 | 
. . . 4
⊢ (𝑥 = 𝐵 → (∀𝑧 ∈ ℕ (𝑧 < 𝑥 → (𝑥 − 𝑧) ∈ ℕ) ↔ ∀𝑧 ∈ ℕ (𝑧 < 𝐵 → (𝐵 − 𝑧) ∈ ℕ))) | 
| 21 |   | nnnlt1 9016 | 
. . . . . 6
⊢ (𝑧 ∈ ℕ → ¬
𝑧 < 1) | 
| 22 | 21 | pm2.21d 620 | 
. . . . 5
⊢ (𝑧 ∈ ℕ → (𝑧 < 1 → (1 − 𝑧) ∈
ℕ)) | 
| 23 | 22 | rgen 2550 | 
. . . 4
⊢
∀𝑧 ∈
ℕ (𝑧 < 1 → (1
− 𝑧) ∈
ℕ) | 
| 24 |   | breq1 4036 | 
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝑧 < 𝑦 ↔ 𝑥 < 𝑦)) | 
| 25 |   | oveq2 5930 | 
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (𝑦 − 𝑧) = (𝑦 − 𝑥)) | 
| 26 | 25 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑧 = 𝑥 → ((𝑦 − 𝑧) ∈ ℕ ↔ (𝑦 − 𝑥) ∈ ℕ)) | 
| 27 | 24, 26 | imbi12d 234 | 
. . . . . 6
⊢ (𝑧 = 𝑥 → ((𝑧 < 𝑦 → (𝑦 − 𝑧) ∈ ℕ) ↔ (𝑥 < 𝑦 → (𝑦 − 𝑥) ∈ ℕ))) | 
| 28 | 27 | cbvralv 2729 | 
. . . . 5
⊢
(∀𝑧 ∈
ℕ (𝑧 < 𝑦 → (𝑦 − 𝑧) ∈ ℕ) ↔ ∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦 − 𝑥) ∈ ℕ)) | 
| 29 |   | nncn 8998 | 
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℂ) | 
| 30 | 29 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈
ℂ) | 
| 31 |   | ax-1cn 7972 | 
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ | 
| 32 |   | pncan 8232 | 
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑦 + 1)
− 1) = 𝑦) | 
| 33 | 30, 31, 32 | sylancl 413 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) = 𝑦) | 
| 34 |   | simpl 109 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → 𝑦 ∈
ℕ) | 
| 35 | 33, 34 | eqeltrd 2273 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 + 1) − 1) ∈
ℕ) | 
| 36 |   | oveq2 5930 | 
. . . . . . . . . . 11
⊢ (𝑧 = 1 → ((𝑦 + 1) − 𝑧) = ((𝑦 + 1) − 1)) | 
| 37 | 36 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑧 = 1 → (((𝑦 + 1) − 𝑧) ∈ ℕ ↔ ((𝑦 + 1) − 1) ∈
ℕ)) | 
| 38 | 35, 37 | syl5ibrcom 157 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → ((𝑦 + 1) − 𝑧) ∈ ℕ)) | 
| 39 | 38 | a1dd 48 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))) | 
| 40 | 39 | a1dd 48 | 
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 → (∀𝑥 ∈ ℕ (𝑥 < 𝑦 → (𝑦 − 𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))) | 
| 41 |   | breq1 4036 | 
. . . . . . . . . 10
⊢ (𝑥 = (𝑧 − 1) → (𝑥 < 𝑦 ↔ (𝑧 − 1) < 𝑦)) | 
| 42 |   | oveq2 5930 | 
. . . . . . . . . . 11
⊢ (𝑥 = (𝑧 − 1) → (𝑦 − 𝑥) = (𝑦 − (𝑧 − 1))) | 
| 43 | 42 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ (𝑥 = (𝑧 − 1) → ((𝑦 − 𝑥) ∈ ℕ ↔ (𝑦 − (𝑧 − 1)) ∈
ℕ)) | 
| 44 | 41, 43 | imbi12d 234 | 
. . . . . . . . 9
⊢ (𝑥 = (𝑧 − 1) → ((𝑥 < 𝑦 → (𝑦 − 𝑥) ∈ ℕ) ↔ ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈
ℕ))) | 
| 45 | 44 | rspcv 2864 | 
. . . . . . . 8
⊢ ((𝑧 − 1) ∈ ℕ
→ (∀𝑥 ∈
ℕ (𝑥 < 𝑦 → (𝑦 − 𝑥) ∈ ℕ) → ((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈
ℕ))) | 
| 46 |   | nnre 8997 | 
. . . . . . . . . . 11
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℝ) | 
| 47 |   | nnre 8997 | 
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ) | 
| 48 |   | 1re 8025 | 
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ | 
| 49 |   | ltsubadd 8459 | 
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ ℝ ∧ 1 ∈
ℝ ∧ 𝑦 ∈
ℝ) → ((𝑧 −
1) < 𝑦 ↔ 𝑧 < (𝑦 + 1))) | 
| 50 | 48, 49 | mp3an2 1336 | 
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑧 − 1) < 𝑦 ↔ 𝑧 < (𝑦 + 1))) | 
| 51 | 46, 47, 50 | syl2anr 290 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) < 𝑦 ↔ 𝑧 < (𝑦 + 1))) | 
| 52 |   | nncn 8998 | 
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ℕ → 𝑧 ∈
ℂ) | 
| 53 |   | subsub3 8258 | 
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑦 −
(𝑧 − 1)) = ((𝑦 + 1) − 𝑧)) | 
| 54 | 31, 53 | mp3an3 1337 | 
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧)) | 
| 55 | 29, 52, 54 | syl2an 289 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑦 − (𝑧 − 1)) = ((𝑦 + 1) − 𝑧)) | 
| 56 | 55 | eleq1d 2265 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑦 − (𝑧 − 1)) ∈ ℕ ↔ ((𝑦 + 1) − 𝑧) ∈ ℕ)) | 
| 57 | 51, 56 | imbi12d 234 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) ↔ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))) | 
| 58 | 57 | biimpd 144 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (((𝑧 − 1) < 𝑦 → (𝑦 − (𝑧 − 1)) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))) | 
| 59 | 45, 58 | syl9r 73 | 
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((𝑧 − 1) ∈ ℕ
→ (∀𝑥 ∈
ℕ (𝑥 < 𝑦 → (𝑦 − 𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ)))) | 
| 60 |   | nn1m1nn 9008 | 
. . . . . . . 8
⊢ (𝑧 ∈ ℕ → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ)) | 
| 61 | 60 | adantl 277 | 
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑧 = 1 ∨ (𝑧 − 1) ∈ ℕ)) | 
| 62 | 40, 59, 61 | mpjaod 719 | 
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ) →
(∀𝑥 ∈ ℕ
(𝑥 < 𝑦 → (𝑦 − 𝑥) ∈ ℕ) → (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))) | 
| 63 | 62 | ralrimdva 2577 | 
. . . . 5
⊢ (𝑦 ∈ ℕ →
(∀𝑥 ∈ ℕ
(𝑥 < 𝑦 → (𝑦 − 𝑥) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))) | 
| 64 | 28, 63 | biimtrid 152 | 
. . . 4
⊢ (𝑦 ∈ ℕ →
(∀𝑧 ∈ ℕ
(𝑧 < 𝑦 → (𝑦 − 𝑧) ∈ ℕ) → ∀𝑧 ∈ ℕ (𝑧 < (𝑦 + 1) → ((𝑦 + 1) − 𝑧) ∈ ℕ))) | 
| 65 | 5, 10, 15, 20, 23, 64 | nnind 9006 | 
. . 3
⊢ (𝐵 ∈ ℕ →
∀𝑧 ∈ ℕ
(𝑧 < 𝐵 → (𝐵 − 𝑧) ∈ ℕ)) | 
| 66 |   | breq1 4036 | 
. . . . 5
⊢ (𝑧 = 𝐴 → (𝑧 < 𝐵 ↔ 𝐴 < 𝐵)) | 
| 67 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑧 = 𝐴 → (𝐵 − 𝑧) = (𝐵 − 𝐴)) | 
| 68 | 67 | eleq1d 2265 | 
. . . . 5
⊢ (𝑧 = 𝐴 → ((𝐵 − 𝑧) ∈ ℕ ↔ (𝐵 − 𝐴) ∈ ℕ)) | 
| 69 | 66, 68 | imbi12d 234 | 
. . . 4
⊢ (𝑧 = 𝐴 → ((𝑧 < 𝐵 → (𝐵 − 𝑧) ∈ ℕ) ↔ (𝐴 < 𝐵 → (𝐵 − 𝐴) ∈ ℕ))) | 
| 70 | 69 | rspcva 2866 | 
. . 3
⊢ ((𝐴 ∈ ℕ ∧
∀𝑧 ∈ ℕ
(𝑧 < 𝐵 → (𝐵 − 𝑧) ∈ ℕ)) → (𝐴 < 𝐵 → (𝐵 − 𝐴) ∈ ℕ)) | 
| 71 | 65, 70 | sylan2 286 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 → (𝐵 − 𝐴) ∈ ℕ)) | 
| 72 |   | nngt0 9015 | 
. . 3
⊢ ((𝐵 − 𝐴) ∈ ℕ → 0 < (𝐵 − 𝐴)) | 
| 73 |   | nnre 8997 | 
. . . 4
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) | 
| 74 |   | nnre 8997 | 
. . . 4
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) | 
| 75 |   | posdif 8482 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | 
| 76 | 73, 74, 75 | syl2an 289 | 
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ 0 < (𝐵 − 𝐴))) | 
| 77 | 72, 76 | imbitrrid 156 | 
. 2
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐵 − 𝐴) ∈ ℕ → 𝐴 < 𝐵)) | 
| 78 | 71, 77 | impbid 129 | 
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵 − 𝐴) ∈ ℕ)) |