| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.23t | GIF version | ||
| Description: Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| 19.23t | ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exim 1613 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | 19.9t 1656 | . . . 4 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 ↔ 𝜓)) | |
| 3 | 2 | biimpd 144 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) | 
| 4 | 1, 3 | syl9r 73 | . 2 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓))) | 
| 5 | nfr 1532 | . . . 4 ⊢ (Ⅎ𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
| 6 | 5 | imim2d 54 | . . 3 ⊢ (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | 
| 7 | 19.38 1690 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 8 | 6, 7 | syl6 33 | . 2 ⊢ (Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) | 
| 9 | 4, 8 | impbid 129 | 1 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: 19.23 1692 r19.23t 2604 ceqsalt 2789 vtoclgft 2814 sbciegft 3020 | 
| Copyright terms: Public domain | W3C validator |