| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snon0 | GIF version | ||
| Description: An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.) |
| Ref | Expression |
|---|---|
| snon0 | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elirr 4597 | . . 3 ⊢ ¬ 𝐴 ∈ 𝐴 | |
| 2 | snidg 3667 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 ∈ {𝐴}) |
| 4 | ontr1 4444 | . . . . . . 7 ⊢ ({𝐴} ∈ On → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴})) | |
| 5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴})) |
| 6 | 3, 5 | mpan2d 428 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐴})) |
| 7 | elsni 3656 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 8 | 6, 7 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝑥 = 𝐴)) |
| 9 | eleq1 2269 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
| 10 | 9 | biimpcd 159 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝐴 → 𝐴 ∈ 𝐴)) |
| 11 | 8, 10 | sylcom 28 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝐴 ∈ 𝐴)) |
| 12 | 1, 11 | mtoi 666 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → ¬ 𝑥 ∈ 𝐴) |
| 13 | 12 | eq0rdv 3509 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∅c0 3464 {csn 3638 Oncon0 4418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 df-sn 3644 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |