ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snon0 GIF version

Theorem snon0 7052
Description: An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.)
Assertion
Ref Expression
snon0 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)

Proof of Theorem snon0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elirr 4597 . . 3 ¬ 𝐴𝐴
2 snidg 3667 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
32adantr 276 . . . . . 6 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 ∈ {𝐴})
4 ontr1 4444 . . . . . . 7 ({𝐴} ∈ On → ((𝑥𝐴𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴}))
54adantl 277 . . . . . 6 ((𝐴𝑉 ∧ {𝐴} ∈ On) → ((𝑥𝐴𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴}))
63, 5mpan2d 428 . . . . 5 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝑥 ∈ {𝐴}))
7 elsni 3656 . . . . 5 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
86, 7syl6 33 . . . 4 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝑥 = 𝐴))
9 eleq1 2269 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
109biimpcd 159 . . . 4 (𝑥𝐴 → (𝑥 = 𝐴𝐴𝐴))
118, 10sylcom 28 . . 3 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝐴𝐴))
121, 11mtoi 666 . 2 ((𝐴𝑉 ∧ {𝐴} ∈ On) → ¬ 𝑥𝐴)
1312eq0rdv 3509 1 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  c0 3464  {csn 3638  Oncon0 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465  df-sn 3644  df-uni 3857  df-tr 4151  df-iord 4421  df-on 4423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator