Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snon0 | GIF version |
Description: An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.) |
Ref | Expression |
---|---|
snon0 | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4534 | . . 3 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | snidg 3618 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 ∈ {𝐴}) |
4 | ontr1 4383 | . . . . . . 7 ⊢ ({𝐴} ∈ On → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴})) | |
5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴})) |
6 | 3, 5 | mpan2d 428 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐴})) |
7 | elsni 3607 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
8 | 6, 7 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝑥 = 𝐴)) |
9 | eleq1 2238 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
10 | 9 | biimpcd 159 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝐴 → 𝐴 ∈ 𝐴)) |
11 | 8, 10 | sylcom 28 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝐴 ∈ 𝐴)) |
12 | 1, 11 | mtoi 664 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → ¬ 𝑥 ∈ 𝐴) |
13 | 12 | eq0rdv 3465 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ∅c0 3420 {csn 3589 Oncon0 4357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-in 3133 df-ss 3140 df-nul 3421 df-sn 3595 df-uni 3806 df-tr 4097 df-iord 4360 df-on 4362 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |