ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snon0 GIF version

Theorem snon0 6832
Description: An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.)
Assertion
Ref Expression
snon0 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)

Proof of Theorem snon0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elirr 4464 . . 3 ¬ 𝐴𝐴
2 snidg 3561 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
32adantr 274 . . . . . 6 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 ∈ {𝐴})
4 ontr1 4319 . . . . . . 7 ({𝐴} ∈ On → ((𝑥𝐴𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴}))
54adantl 275 . . . . . 6 ((𝐴𝑉 ∧ {𝐴} ∈ On) → ((𝑥𝐴𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴}))
63, 5mpan2d 425 . . . . 5 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝑥 ∈ {𝐴}))
7 elsni 3550 . . . . 5 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
86, 7syl6 33 . . . 4 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝑥 = 𝐴))
9 eleq1 2203 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
109biimpcd 158 . . . 4 (𝑥𝐴 → (𝑥 = 𝐴𝐴𝐴))
118, 10sylcom 28 . . 3 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝐴𝐴))
121, 11mtoi 654 . 2 ((𝐴𝑉 ∧ {𝐴} ∈ On) → ¬ 𝑥𝐴)
1312eq0rdv 3412 1 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  c0 3368  {csn 3532  Oncon0 4293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-setind 4460
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-v 2691  df-dif 3078  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-uni 3745  df-tr 4035  df-iord 4296  df-on 4298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator