ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snon0 GIF version

Theorem snon0 7098
Description: An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.)
Assertion
Ref Expression
snon0 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)

Proof of Theorem snon0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elirr 4632 . . 3 ¬ 𝐴𝐴
2 snidg 3695 . . . . . . 7 (𝐴𝑉𝐴 ∈ {𝐴})
32adantr 276 . . . . . 6 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 ∈ {𝐴})
4 ontr1 4479 . . . . . . 7 ({𝐴} ∈ On → ((𝑥𝐴𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴}))
54adantl 277 . . . . . 6 ((𝐴𝑉 ∧ {𝐴} ∈ On) → ((𝑥𝐴𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴}))
63, 5mpan2d 428 . . . . 5 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝑥 ∈ {𝐴}))
7 elsni 3684 . . . . 5 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
86, 7syl6 33 . . . 4 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝑥 = 𝐴))
9 eleq1 2292 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
109biimpcd 159 . . . 4 (𝑥𝐴 → (𝑥 = 𝐴𝐴𝐴))
118, 10sylcom 28 . . 3 ((𝐴𝑉 ∧ {𝐴} ∈ On) → (𝑥𝐴𝐴𝐴))
121, 11mtoi 668 . 2 ((𝐴𝑉 ∧ {𝐴} ∈ On) → ¬ 𝑥𝐴)
1312eq0rdv 3536 1 ((𝐴𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  c0 3491  {csn 3666  Oncon0 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-sn 3672  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator