Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snon0 | GIF version |
Description: An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.) |
Ref | Expression |
---|---|
snon0 | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4525 | . . 3 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | snidg 3612 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
3 | 2 | adantr 274 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 ∈ {𝐴}) |
4 | ontr1 4374 | . . . . . . 7 ⊢ ({𝐴} ∈ On → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴})) | |
5 | 4 | adantl 275 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴})) |
6 | 3, 5 | mpan2d 426 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐴})) |
7 | elsni 3601 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
8 | 6, 7 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝑥 = 𝐴)) |
9 | eleq1 2233 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
10 | 9 | biimpcd 158 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝐴 → 𝐴 ∈ 𝐴)) |
11 | 8, 10 | sylcom 28 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝐴 ∈ 𝐴)) |
12 | 1, 11 | mtoi 659 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → ¬ 𝑥 ∈ 𝐴) |
13 | 12 | eq0rdv 3459 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∅c0 3414 {csn 3583 Oncon0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |