![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snon0 | GIF version |
Description: An ordinal which is a singleton is {∅}. (Contributed by Jim Kingdon, 19-Oct-2021.) |
Ref | Expression |
---|---|
snon0 | ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 4574 | . . 3 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | snidg 3648 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
3 | 2 | adantr 276 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 ∈ {𝐴}) |
4 | ontr1 4421 | . . . . . . 7 ⊢ ({𝐴} ∈ On → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴})) | |
5 | 4 | adantl 277 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → ((𝑥 ∈ 𝐴 ∧ 𝐴 ∈ {𝐴}) → 𝑥 ∈ {𝐴})) |
6 | 3, 5 | mpan2d 428 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝑥 ∈ {𝐴})) |
7 | elsni 3637 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
8 | 6, 7 | syl6 33 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝑥 = 𝐴)) |
9 | eleq1 2256 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
10 | 9 | biimpcd 159 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (𝑥 = 𝐴 → 𝐴 ∈ 𝐴)) |
11 | 8, 10 | sylcom 28 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → (𝑥 ∈ 𝐴 → 𝐴 ∈ 𝐴)) |
12 | 1, 11 | mtoi 665 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → ¬ 𝑥 ∈ 𝐴) |
13 | 12 | eq0rdv 3492 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐴} ∈ On) → 𝐴 = ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 ∅c0 3447 {csn 3619 Oncon0 4395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-nul 3448 df-sn 3625 df-uni 3837 df-tr 4129 df-iord 4398 df-on 4400 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |