ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopg GIF version

Theorem funopg 5246
Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
funopg ((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)

Proof of Theorem funopg
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3776 . . . . 5 (𝑢 = 𝐴 → ⟨𝑢, 𝑡⟩ = ⟨𝐴, 𝑡⟩)
21funeqd 5234 . . . 4 (𝑢 = 𝐴 → (Fun ⟨𝑢, 𝑡⟩ ↔ Fun ⟨𝐴, 𝑡⟩))
3 eqeq1 2184 . . . 4 (𝑢 = 𝐴 → (𝑢 = 𝑡𝐴 = 𝑡))
42, 3imbi12d 234 . . 3 (𝑢 = 𝐴 → ((Fun ⟨𝑢, 𝑡⟩ → 𝑢 = 𝑡) ↔ (Fun ⟨𝐴, 𝑡⟩ → 𝐴 = 𝑡)))
5 opeq2 3777 . . . . 5 (𝑡 = 𝐵 → ⟨𝐴, 𝑡⟩ = ⟨𝐴, 𝐵⟩)
65funeqd 5234 . . . 4 (𝑡 = 𝐵 → (Fun ⟨𝐴, 𝑡⟩ ↔ Fun ⟨𝐴, 𝐵⟩))
7 eqeq2 2187 . . . 4 (𝑡 = 𝐵 → (𝐴 = 𝑡𝐴 = 𝐵))
86, 7imbi12d 234 . . 3 (𝑡 = 𝐵 → ((Fun ⟨𝐴, 𝑡⟩ → 𝐴 = 𝑡) ↔ (Fun ⟨𝐴, 𝐵⟩ → 𝐴 = 𝐵)))
9 funrel 5229 . . . . 5 (Fun ⟨𝑢, 𝑡⟩ → Rel ⟨𝑢, 𝑡⟩)
10 vex 2740 . . . . . 6 𝑢 ∈ V
11 vex 2740 . . . . . 6 𝑡 ∈ V
1210, 11relop 4773 . . . . 5 (Rel ⟨𝑢, 𝑡⟩ ↔ ∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
139, 12sylib 122 . . . 4 (Fun ⟨𝑢, 𝑡⟩ → ∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
1410, 11opth 4234 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨{𝑥}, {𝑥, 𝑦}⟩ ↔ (𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
15 vex 2740 . . . . . . . . . . . 12 𝑥 ∈ V
1615opid 3794 . . . . . . . . . . 11 𝑥, 𝑥⟩ = {{𝑥}}
1716preq1i 3671 . . . . . . . . . 10 {⟨𝑥, 𝑥⟩, {{𝑥}, {𝑥, 𝑦}}} = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}}
18 vex 2740 . . . . . . . . . . . 12 𝑦 ∈ V
1915, 18dfop 3775 . . . . . . . . . . 11 𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}}
2019preq2i 3672 . . . . . . . . . 10 {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} = {⟨𝑥, 𝑥⟩, {{𝑥}, {𝑥, 𝑦}}}
2115snex 4182 . . . . . . . . . . 11 {𝑥} ∈ V
22 zfpair2 4207 . . . . . . . . . . 11 {𝑥, 𝑦} ∈ V
2321, 22dfop 3775 . . . . . . . . . 10 ⟨{𝑥}, {𝑥, 𝑦}⟩ = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}}
2417, 20, 233eqtr4ri 2209 . . . . . . . . 9 ⟨{𝑥}, {𝑥, 𝑦}⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
2524eqeq2i 2188 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨{𝑥}, {𝑥, 𝑦}⟩ ↔ ⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩})
2614, 25bitr3i 186 . . . . . . 7 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) ↔ ⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩})
27 dffun4 5223 . . . . . . . . 9 (Fun ⟨𝑢, 𝑡⟩ ↔ (Rel ⟨𝑢, 𝑡⟩ ∧ ∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣)))
2827simprbi 275 . . . . . . . 8 (Fun ⟨𝑢, 𝑡⟩ → ∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣))
2915, 15opex 4226 . . . . . . . . . . 11 𝑥, 𝑥⟩ ∈ V
3029prid1 3697 . . . . . . . . . 10 𝑥, 𝑥⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
31 eleq2 2241 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑥⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}))
3230, 31mpbiri 168 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → ⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩)
3315, 18opex 4226 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
3433prid2 3698 . . . . . . . . . 10 𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
35 eleq2 2241 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}))
3634, 35mpbiri 168 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩)
3732, 36jca 306 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩))
38 opeq12 3778 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥𝑤 = 𝑥) → ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑥⟩)
39383adant3 1017 . . . . . . . . . . . . 13 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑥⟩)
4039eleq1d 2246 . . . . . . . . . . . 12 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩))
41 opeq12 3778 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
42413adant2 1016 . . . . . . . . . . . . 13 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
4342eleq1d 2246 . . . . . . . . . . . 12 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩))
4440, 43anbi12d 473 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) ↔ (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩)))
45 eqeq12 2190 . . . . . . . . . . . 12 ((𝑤 = 𝑥𝑣 = 𝑦) → (𝑤 = 𝑣𝑥 = 𝑦))
46453adant1 1015 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (𝑤 = 𝑣𝑥 = 𝑦))
4744, 46imbi12d 234 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) ↔ ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦)))
4847spc3gv 2830 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) → ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦)))
4915, 15, 18, 48mp3an 1337 . . . . . . . 8 (∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) → ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦))
5028, 37, 49syl2im 38 . . . . . . 7 (Fun ⟨𝑢, 𝑡⟩ → (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → 𝑥 = 𝑦))
5126, 50biimtrid 152 . . . . . 6 (Fun ⟨𝑢, 𝑡⟩ → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑥 = 𝑦))
52 dfsn2 3605 . . . . . . . . . . 11 {𝑥} = {𝑥, 𝑥}
53 preq2 3669 . . . . . . . . . . 11 (𝑥 = 𝑦 → {𝑥, 𝑥} = {𝑥, 𝑦})
5452, 53eqtr2id 2223 . . . . . . . . . 10 (𝑥 = 𝑦 → {𝑥, 𝑦} = {𝑥})
5554eqeq2d 2189 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} ↔ 𝑡 = {𝑥}))
56 eqtr3 2197 . . . . . . . . . 10 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥}) → 𝑢 = 𝑡)
5756expcom 116 . . . . . . . . 9 (𝑡 = {𝑥} → (𝑢 = {𝑥} → 𝑢 = 𝑡))
5855, 57syl6bi 163 . . . . . . . 8 (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} → (𝑢 = {𝑥} → 𝑢 = 𝑡)))
5958com13 80 . . . . . . 7 (𝑢 = {𝑥} → (𝑡 = {𝑥, 𝑦} → (𝑥 = 𝑦𝑢 = 𝑡)))
6059imp 124 . . . . . 6 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → (𝑥 = 𝑦𝑢 = 𝑡))
6151, 60sylcom 28 . . . . 5 (Fun ⟨𝑢, 𝑡⟩ → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡))
6261exlimdvv 1897 . . . 4 (Fun ⟨𝑢, 𝑡⟩ → (∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡))
6313, 62mpd 13 . . 3 (Fun ⟨𝑢, 𝑡⟩ → 𝑢 = 𝑡)
644, 8, 63vtocl2g 2801 . 2 ((𝐴𝑉𝐵𝑊) → (Fun ⟨𝐴, 𝐵⟩ → 𝐴 = 𝐵))
65643impia 1200 1 ((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978  wal 1351   = wceq 1353  wex 1492  wcel 2148  Vcvv 2737  {csn 3591  {cpr 3592  cop 3594  Rel wrel 4628  Fun wfun 5206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-fun 5214
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator