| Step | Hyp | Ref
| Expression |
| 1 | | opeq1 3808 |
. . . . 5
⊢ (𝑢 = 𝐴 → 〈𝑢, 𝑡〉 = 〈𝐴, 𝑡〉) |
| 2 | 1 | funeqd 5280 |
. . . 4
⊢ (𝑢 = 𝐴 → (Fun 〈𝑢, 𝑡〉 ↔ Fun 〈𝐴, 𝑡〉)) |
| 3 | | eqeq1 2203 |
. . . 4
⊢ (𝑢 = 𝐴 → (𝑢 = 𝑡 ↔ 𝐴 = 𝑡)) |
| 4 | 2, 3 | imbi12d 234 |
. . 3
⊢ (𝑢 = 𝐴 → ((Fun 〈𝑢, 𝑡〉 → 𝑢 = 𝑡) ↔ (Fun 〈𝐴, 𝑡〉 → 𝐴 = 𝑡))) |
| 5 | | opeq2 3809 |
. . . . 5
⊢ (𝑡 = 𝐵 → 〈𝐴, 𝑡〉 = 〈𝐴, 𝐵〉) |
| 6 | 5 | funeqd 5280 |
. . . 4
⊢ (𝑡 = 𝐵 → (Fun 〈𝐴, 𝑡〉 ↔ Fun 〈𝐴, 𝐵〉)) |
| 7 | | eqeq2 2206 |
. . . 4
⊢ (𝑡 = 𝐵 → (𝐴 = 𝑡 ↔ 𝐴 = 𝐵)) |
| 8 | 6, 7 | imbi12d 234 |
. . 3
⊢ (𝑡 = 𝐵 → ((Fun 〈𝐴, 𝑡〉 → 𝐴 = 𝑡) ↔ (Fun 〈𝐴, 𝐵〉 → 𝐴 = 𝐵))) |
| 9 | | funrel 5275 |
. . . . 5
⊢ (Fun
〈𝑢, 𝑡〉 → Rel 〈𝑢, 𝑡〉) |
| 10 | | vex 2766 |
. . . . . 6
⊢ 𝑢 ∈ V |
| 11 | | vex 2766 |
. . . . . 6
⊢ 𝑡 ∈ V |
| 12 | 10, 11 | relop 4816 |
. . . . 5
⊢ (Rel
〈𝑢, 𝑡〉 ↔ ∃𝑥∃𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦})) |
| 13 | 9, 12 | sylib 122 |
. . . 4
⊢ (Fun
〈𝑢, 𝑡〉 → ∃𝑥∃𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦})) |
| 14 | 10, 11 | opth 4270 |
. . . . . . . 8
⊢
(〈𝑢, 𝑡〉 = 〈{𝑥}, {𝑥, 𝑦}〉 ↔ (𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦})) |
| 15 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 16 | 15 | opid 3826 |
. . . . . . . . . . 11
⊢
〈𝑥, 𝑥〉 = {{𝑥}} |
| 17 | 16 | preq1i 3702 |
. . . . . . . . . 10
⊢
{〈𝑥, 𝑥〉, {{𝑥}, {𝑥, 𝑦}}} = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}} |
| 18 | | vex 2766 |
. . . . . . . . . . . 12
⊢ 𝑦 ∈ V |
| 19 | 15, 18 | dfop 3807 |
. . . . . . . . . . 11
⊢
〈𝑥, 𝑦〉 = {{𝑥}, {𝑥, 𝑦}} |
| 20 | 19 | preq2i 3703 |
. . . . . . . . . 10
⊢
{〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} = {〈𝑥, 𝑥〉, {{𝑥}, {𝑥, 𝑦}}} |
| 21 | 15 | snex 4218 |
. . . . . . . . . . 11
⊢ {𝑥} ∈ V |
| 22 | | zfpair2 4243 |
. . . . . . . . . . 11
⊢ {𝑥, 𝑦} ∈ V |
| 23 | 21, 22 | dfop 3807 |
. . . . . . . . . 10
⊢
〈{𝑥}, {𝑥, 𝑦}〉 = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}} |
| 24 | 17, 20, 23 | 3eqtr4ri 2228 |
. . . . . . . . 9
⊢
〈{𝑥}, {𝑥, 𝑦}〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} |
| 25 | 24 | eqeq2i 2207 |
. . . . . . . 8
⊢
(〈𝑢, 𝑡〉 = 〈{𝑥}, {𝑥, 𝑦}〉 ↔ 〈𝑢, 𝑡〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉}) |
| 26 | 14, 25 | bitr3i 186 |
. . . . . . 7
⊢ ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) ↔ 〈𝑢, 𝑡〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉}) |
| 27 | | dffun4 5269 |
. . . . . . . . 9
⊢ (Fun
〈𝑢, 𝑡〉 ↔ (Rel 〈𝑢, 𝑡〉 ∧ ∀𝑧∀𝑤∀𝑣((〈𝑧, 𝑤〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑧, 𝑣〉 ∈ 〈𝑢, 𝑡〉) → 𝑤 = 𝑣))) |
| 28 | 27 | simprbi 275 |
. . . . . . . 8
⊢ (Fun
〈𝑢, 𝑡〉 → ∀𝑧∀𝑤∀𝑣((〈𝑧, 𝑤〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑧, 𝑣〉 ∈ 〈𝑢, 𝑡〉) → 𝑤 = 𝑣)) |
| 29 | 15, 15 | opex 4262 |
. . . . . . . . . . 11
⊢
〈𝑥, 𝑥〉 ∈ V |
| 30 | 29 | prid1 3728 |
. . . . . . . . . 10
⊢
〈𝑥, 𝑥〉 ∈ {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} |
| 31 | | eleq2 2260 |
. . . . . . . . . 10
⊢
(〈𝑢, 𝑡〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} → (〈𝑥, 𝑥〉 ∈ 〈𝑢, 𝑡〉 ↔ 〈𝑥, 𝑥〉 ∈ {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉})) |
| 32 | 30, 31 | mpbiri 168 |
. . . . . . . . 9
⊢
(〈𝑢, 𝑡〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} → 〈𝑥, 𝑥〉 ∈ 〈𝑢, 𝑡〉) |
| 33 | 15, 18 | opex 4262 |
. . . . . . . . . . 11
⊢
〈𝑥, 𝑦〉 ∈ V |
| 34 | 33 | prid2 3729 |
. . . . . . . . . 10
⊢
〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} |
| 35 | | eleq2 2260 |
. . . . . . . . . 10
⊢
(〈𝑢, 𝑡〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} → (〈𝑥, 𝑦〉 ∈ 〈𝑢, 𝑡〉 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉})) |
| 36 | 34, 35 | mpbiri 168 |
. . . . . . . . 9
⊢
(〈𝑢, 𝑡〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} → 〈𝑥, 𝑦〉 ∈ 〈𝑢, 𝑡〉) |
| 37 | 32, 36 | jca 306 |
. . . . . . . 8
⊢
(〈𝑢, 𝑡〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} → (〈𝑥, 𝑥〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑥, 𝑦〉 ∈ 〈𝑢, 𝑡〉)) |
| 38 | | opeq12 3810 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑥) → 〈𝑧, 𝑤〉 = 〈𝑥, 𝑥〉) |
| 39 | 38 | 3adant3 1019 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → 〈𝑧, 𝑤〉 = 〈𝑥, 𝑥〉) |
| 40 | 39 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → (〈𝑧, 𝑤〉 ∈ 〈𝑢, 𝑡〉 ↔ 〈𝑥, 𝑥〉 ∈ 〈𝑢, 𝑡〉)) |
| 41 | | opeq12 3810 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 = 𝑥 ∧ 𝑣 = 𝑦) → 〈𝑧, 𝑣〉 = 〈𝑥, 𝑦〉) |
| 42 | 41 | 3adant2 1018 |
. . . . . . . . . . . . 13
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → 〈𝑧, 𝑣〉 = 〈𝑥, 𝑦〉) |
| 43 | 42 | eleq1d 2265 |
. . . . . . . . . . . 12
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → (〈𝑧, 𝑣〉 ∈ 〈𝑢, 𝑡〉 ↔ 〈𝑥, 𝑦〉 ∈ 〈𝑢, 𝑡〉)) |
| 44 | 40, 43 | anbi12d 473 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → ((〈𝑧, 𝑤〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑧, 𝑣〉 ∈ 〈𝑢, 𝑡〉) ↔ (〈𝑥, 𝑥〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑥, 𝑦〉 ∈ 〈𝑢, 𝑡〉))) |
| 45 | | eqeq12 2209 |
. . . . . . . . . . . 12
⊢ ((𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → (𝑤 = 𝑣 ↔ 𝑥 = 𝑦)) |
| 46 | 45 | 3adant1 1017 |
. . . . . . . . . . 11
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → (𝑤 = 𝑣 ↔ 𝑥 = 𝑦)) |
| 47 | 44, 46 | imbi12d 234 |
. . . . . . . . . 10
⊢ ((𝑧 = 𝑥 ∧ 𝑤 = 𝑥 ∧ 𝑣 = 𝑦) → (((〈𝑧, 𝑤〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑧, 𝑣〉 ∈ 〈𝑢, 𝑡〉) → 𝑤 = 𝑣) ↔ ((〈𝑥, 𝑥〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑥, 𝑦〉 ∈ 〈𝑢, 𝑡〉) → 𝑥 = 𝑦))) |
| 48 | 47 | spc3gv 2857 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (∀𝑧∀𝑤∀𝑣((〈𝑧, 𝑤〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑧, 𝑣〉 ∈ 〈𝑢, 𝑡〉) → 𝑤 = 𝑣) → ((〈𝑥, 𝑥〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑥, 𝑦〉 ∈ 〈𝑢, 𝑡〉) → 𝑥 = 𝑦))) |
| 49 | 15, 15, 18, 48 | mp3an 1348 |
. . . . . . . 8
⊢
(∀𝑧∀𝑤∀𝑣((〈𝑧, 𝑤〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑧, 𝑣〉 ∈ 〈𝑢, 𝑡〉) → 𝑤 = 𝑣) → ((〈𝑥, 𝑥〉 ∈ 〈𝑢, 𝑡〉 ∧ 〈𝑥, 𝑦〉 ∈ 〈𝑢, 𝑡〉) → 𝑥 = 𝑦)) |
| 50 | 28, 37, 49 | syl2im 38 |
. . . . . . 7
⊢ (Fun
〈𝑢, 𝑡〉 → (〈𝑢, 𝑡〉 = {〈𝑥, 𝑥〉, 〈𝑥, 𝑦〉} → 𝑥 = 𝑦)) |
| 51 | 26, 50 | biimtrid 152 |
. . . . . 6
⊢ (Fun
〈𝑢, 𝑡〉 → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑥 = 𝑦)) |
| 52 | | dfsn2 3636 |
. . . . . . . . . . 11
⊢ {𝑥} = {𝑥, 𝑥} |
| 53 | | preq2 3700 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → {𝑥, 𝑥} = {𝑥, 𝑦}) |
| 54 | 52, 53 | eqtr2id 2242 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → {𝑥, 𝑦} = {𝑥}) |
| 55 | 54 | eqeq2d 2208 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} ↔ 𝑡 = {𝑥})) |
| 56 | | eqtr3 2216 |
. . . . . . . . . 10
⊢ ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥}) → 𝑢 = 𝑡) |
| 57 | 56 | expcom 116 |
. . . . . . . . 9
⊢ (𝑡 = {𝑥} → (𝑢 = {𝑥} → 𝑢 = 𝑡)) |
| 58 | 55, 57 | biimtrdi 163 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} → (𝑢 = {𝑥} → 𝑢 = 𝑡))) |
| 59 | 58 | com13 80 |
. . . . . . 7
⊢ (𝑢 = {𝑥} → (𝑡 = {𝑥, 𝑦} → (𝑥 = 𝑦 → 𝑢 = 𝑡))) |
| 60 | 59 | imp 124 |
. . . . . 6
⊢ ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → (𝑥 = 𝑦 → 𝑢 = 𝑡)) |
| 61 | 51, 60 | sylcom 28 |
. . . . 5
⊢ (Fun
〈𝑢, 𝑡〉 → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡)) |
| 62 | 61 | exlimdvv 1912 |
. . . 4
⊢ (Fun
〈𝑢, 𝑡〉 → (∃𝑥∃𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡)) |
| 63 | 13, 62 | mpd 13 |
. . 3
⊢ (Fun
〈𝑢, 𝑡〉 → 𝑢 = 𝑡) |
| 64 | 4, 8, 63 | vtocl2g 2828 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun 〈𝐴, 𝐵〉 → 𝐴 = 𝐵)) |
| 65 | 64 | 3impia 1202 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ Fun 〈𝐴, 𝐵〉) → 𝐴 = 𝐵) |