ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopg GIF version

Theorem funopg 5221
Description: A Kuratowski ordered pair is a function only if its components are equal. (Contributed by NM, 5-Jun-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
funopg ((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)

Proof of Theorem funopg
Dummy variables 𝑢 𝑡 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3757 . . . . 5 (𝑢 = 𝐴 → ⟨𝑢, 𝑡⟩ = ⟨𝐴, 𝑡⟩)
21funeqd 5209 . . . 4 (𝑢 = 𝐴 → (Fun ⟨𝑢, 𝑡⟩ ↔ Fun ⟨𝐴, 𝑡⟩))
3 eqeq1 2172 . . . 4 (𝑢 = 𝐴 → (𝑢 = 𝑡𝐴 = 𝑡))
42, 3imbi12d 233 . . 3 (𝑢 = 𝐴 → ((Fun ⟨𝑢, 𝑡⟩ → 𝑢 = 𝑡) ↔ (Fun ⟨𝐴, 𝑡⟩ → 𝐴 = 𝑡)))
5 opeq2 3758 . . . . 5 (𝑡 = 𝐵 → ⟨𝐴, 𝑡⟩ = ⟨𝐴, 𝐵⟩)
65funeqd 5209 . . . 4 (𝑡 = 𝐵 → (Fun ⟨𝐴, 𝑡⟩ ↔ Fun ⟨𝐴, 𝐵⟩))
7 eqeq2 2175 . . . 4 (𝑡 = 𝐵 → (𝐴 = 𝑡𝐴 = 𝐵))
86, 7imbi12d 233 . . 3 (𝑡 = 𝐵 → ((Fun ⟨𝐴, 𝑡⟩ → 𝐴 = 𝑡) ↔ (Fun ⟨𝐴, 𝐵⟩ → 𝐴 = 𝐵)))
9 funrel 5204 . . . . 5 (Fun ⟨𝑢, 𝑡⟩ → Rel ⟨𝑢, 𝑡⟩)
10 vex 2728 . . . . . 6 𝑢 ∈ V
11 vex 2728 . . . . . 6 𝑡 ∈ V
1210, 11relop 4753 . . . . 5 (Rel ⟨𝑢, 𝑡⟩ ↔ ∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
139, 12sylib 121 . . . 4 (Fun ⟨𝑢, 𝑡⟩ → ∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
1410, 11opth 4214 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨{𝑥}, {𝑥, 𝑦}⟩ ↔ (𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}))
15 vex 2728 . . . . . . . . . . . 12 𝑥 ∈ V
1615opid 3775 . . . . . . . . . . 11 𝑥, 𝑥⟩ = {{𝑥}}
1716preq1i 3655 . . . . . . . . . 10 {⟨𝑥, 𝑥⟩, {{𝑥}, {𝑥, 𝑦}}} = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}}
18 vex 2728 . . . . . . . . . . . 12 𝑦 ∈ V
1915, 18dfop 3756 . . . . . . . . . . 11 𝑥, 𝑦⟩ = {{𝑥}, {𝑥, 𝑦}}
2019preq2i 3656 . . . . . . . . . 10 {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} = {⟨𝑥, 𝑥⟩, {{𝑥}, {𝑥, 𝑦}}}
2115snex 4163 . . . . . . . . . . 11 {𝑥} ∈ V
22 zfpair2 4187 . . . . . . . . . . 11 {𝑥, 𝑦} ∈ V
2321, 22dfop 3756 . . . . . . . . . 10 ⟨{𝑥}, {𝑥, 𝑦}⟩ = {{{𝑥}}, {{𝑥}, {𝑥, 𝑦}}}
2417, 20, 233eqtr4ri 2197 . . . . . . . . 9 ⟨{𝑥}, {𝑥, 𝑦}⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
2524eqeq2i 2176 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = ⟨{𝑥}, {𝑥, 𝑦}⟩ ↔ ⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩})
2614, 25bitr3i 185 . . . . . . 7 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) ↔ ⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩})
27 dffun4 5198 . . . . . . . . 9 (Fun ⟨𝑢, 𝑡⟩ ↔ (Rel ⟨𝑢, 𝑡⟩ ∧ ∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣)))
2827simprbi 273 . . . . . . . 8 (Fun ⟨𝑢, 𝑡⟩ → ∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣))
2915, 15opex 4206 . . . . . . . . . . 11 𝑥, 𝑥⟩ ∈ V
3029prid1 3681 . . . . . . . . . 10 𝑥, 𝑥⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
31 eleq2 2229 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑥⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}))
3230, 31mpbiri 167 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → ⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩)
3315, 18opex 4206 . . . . . . . . . . 11 𝑥, 𝑦⟩ ∈ V
3433prid2 3682 . . . . . . . . . 10 𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}
35 eleq2 2229 . . . . . . . . . 10 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩}))
3634, 35mpbiri 167 . . . . . . . . 9 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩)
3732, 36jca 304 . . . . . . . 8 (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩))
38 opeq12 3759 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥𝑤 = 𝑥) → ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑥⟩)
39383adant3 1007 . . . . . . . . . . . . 13 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑤⟩ = ⟨𝑥, 𝑥⟩)
4039eleq1d 2234 . . . . . . . . . . . 12 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩))
41 opeq12 3759 . . . . . . . . . . . . . 14 ((𝑧 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
42413adant2 1006 . . . . . . . . . . . . 13 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ⟨𝑧, 𝑣⟩ = ⟨𝑥, 𝑦⟩)
4342eleq1d 2234 . . . . . . . . . . . 12 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩ ↔ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩))
4440, 43anbi12d 465 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → ((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) ↔ (⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩)))
45 eqeq12 2178 . . . . . . . . . . . 12 ((𝑤 = 𝑥𝑣 = 𝑦) → (𝑤 = 𝑣𝑥 = 𝑦))
46453adant1 1005 . . . . . . . . . . 11 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (𝑤 = 𝑣𝑥 = 𝑦))
4744, 46imbi12d 233 . . . . . . . . . 10 ((𝑧 = 𝑥𝑤 = 𝑥𝑣 = 𝑦) → (((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) ↔ ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦)))
4847spc3gv 2818 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) → ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦)))
4915, 15, 18, 48mp3an 1327 . . . . . . . 8 (∀𝑧𝑤𝑣((⟨𝑧, 𝑤⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑧, 𝑣⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑤 = 𝑣) → ((⟨𝑥, 𝑥⟩ ∈ ⟨𝑢, 𝑡⟩ ∧ ⟨𝑥, 𝑦⟩ ∈ ⟨𝑢, 𝑡⟩) → 𝑥 = 𝑦))
5028, 37, 49syl2im 38 . . . . . . 7 (Fun ⟨𝑢, 𝑡⟩ → (⟨𝑢, 𝑡⟩ = {⟨𝑥, 𝑥⟩, ⟨𝑥, 𝑦⟩} → 𝑥 = 𝑦))
5126, 50syl5bi 151 . . . . . 6 (Fun ⟨𝑢, 𝑡⟩ → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑥 = 𝑦))
52 dfsn2 3589 . . . . . . . . . . 11 {𝑥} = {𝑥, 𝑥}
53 preq2 3653 . . . . . . . . . . 11 (𝑥 = 𝑦 → {𝑥, 𝑥} = {𝑥, 𝑦})
5452, 53eqtr2id 2211 . . . . . . . . . 10 (𝑥 = 𝑦 → {𝑥, 𝑦} = {𝑥})
5554eqeq2d 2177 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} ↔ 𝑡 = {𝑥}))
56 eqtr3 2185 . . . . . . . . . 10 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥}) → 𝑢 = 𝑡)
5756expcom 115 . . . . . . . . 9 (𝑡 = {𝑥} → (𝑢 = {𝑥} → 𝑢 = 𝑡))
5855, 57syl6bi 162 . . . . . . . 8 (𝑥 = 𝑦 → (𝑡 = {𝑥, 𝑦} → (𝑢 = {𝑥} → 𝑢 = 𝑡)))
5958com13 80 . . . . . . 7 (𝑢 = {𝑥} → (𝑡 = {𝑥, 𝑦} → (𝑥 = 𝑦𝑢 = 𝑡)))
6059imp 123 . . . . . 6 ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → (𝑥 = 𝑦𝑢 = 𝑡))
6151, 60sylcom 28 . . . . 5 (Fun ⟨𝑢, 𝑡⟩ → ((𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡))
6261exlimdvv 1885 . . . 4 (Fun ⟨𝑢, 𝑡⟩ → (∃𝑥𝑦(𝑢 = {𝑥} ∧ 𝑡 = {𝑥, 𝑦}) → 𝑢 = 𝑡))
6313, 62mpd 13 . . 3 (Fun ⟨𝑢, 𝑡⟩ → 𝑢 = 𝑡)
644, 8, 63vtocl2g 2789 . 2 ((𝐴𝑉𝐵𝑊) → (Fun ⟨𝐴, 𝐵⟩ → 𝐴 = 𝐵))
65643impia 1190 1 ((𝐴𝑉𝐵𝑊 ∧ Fun ⟨𝐴, 𝐵⟩) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wal 1341   = wceq 1343  wex 1480  wcel 2136  Vcvv 2725  {csn 3575  {cpr 3576  cop 3578  Rel wrel 4608  Fun wfun 5181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-v 2727  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-fun 5189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator