ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmcosseq GIF version

Theorem dmcosseq 4937
Description: Domain of a composition. (Contributed by NM, 28-May-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dmcosseq (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)

Proof of Theorem dmcosseq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmcoss 4935 . . 3 dom (𝐴𝐵) ⊆ dom 𝐵
21a1i 9 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐵)
3 ssel 3177 . . . . . . . 8 (ran 𝐵 ⊆ dom 𝐴 → (𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴))
4 vex 2766 . . . . . . . . . . 11 𝑦 ∈ V
54elrn 4909 . . . . . . . . . 10 (𝑦 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝑦)
64eldm 4863 . . . . . . . . . 10 (𝑦 ∈ dom 𝐴 ↔ ∃𝑧 𝑦𝐴𝑧)
75, 6imbi12i 239 . . . . . . . . 9 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) ↔ (∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧))
8 19.8a 1604 . . . . . . . . . . 11 (𝑥𝐵𝑦 → ∃𝑥 𝑥𝐵𝑦)
98imim1i 60 . . . . . . . . . 10 ((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧))
10 pm3.2 139 . . . . . . . . . . 11 (𝑥𝐵𝑦 → (𝑦𝐴𝑧 → (𝑥𝐵𝑦𝑦𝐴𝑧)))
1110eximdv 1894 . . . . . . . . . 10 (𝑥𝐵𝑦 → (∃𝑧 𝑦𝐴𝑧 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
129, 11sylcom 28 . . . . . . . . 9 ((∃𝑥 𝑥𝐵𝑦 → ∃𝑧 𝑦𝐴𝑧) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
137, 12sylbi 121 . . . . . . . 8 ((𝑦 ∈ ran 𝐵𝑦 ∈ dom 𝐴) → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
143, 13syl 14 . . . . . . 7 (ran 𝐵 ⊆ dom 𝐴 → (𝑥𝐵𝑦 → ∃𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
1514eximdv 1894 . . . . . 6 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑦𝑧(𝑥𝐵𝑦𝑦𝐴𝑧)))
16 excom 1678 . . . . . 6 (∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧) ↔ ∃𝑦𝑧(𝑥𝐵𝑦𝑦𝐴𝑧))
1715, 16imbitrrdi 162 . . . . 5 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧)))
18 vex 2766 . . . . . . 7 𝑥 ∈ V
19 vex 2766 . . . . . . 7 𝑧 ∈ V
2018, 19opelco 4838 . . . . . 6 (⟨𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2120exbii 1619 . . . . 5 (∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵) ↔ ∃𝑧𝑦(𝑥𝐵𝑦𝑦𝐴𝑧))
2217, 21imbitrrdi 162 . . . 4 (ran 𝐵 ⊆ dom 𝐴 → (∃𝑦 𝑥𝐵𝑦 → ∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵)))
2318eldm 4863 . . . 4 (𝑥 ∈ dom 𝐵 ↔ ∃𝑦 𝑥𝐵𝑦)
2418eldm2 4864 . . . 4 (𝑥 ∈ dom (𝐴𝐵) ↔ ∃𝑧𝑥, 𝑧⟩ ∈ (𝐴𝐵))
2522, 23, 243imtr4g 205 . . 3 (ran 𝐵 ⊆ dom 𝐴 → (𝑥 ∈ dom 𝐵𝑥 ∈ dom (𝐴𝐵)))
2625ssrdv 3189 . 2 (ran 𝐵 ⊆ dom 𝐴 → dom 𝐵 ⊆ dom (𝐴𝐵))
272, 26eqssd 3200 1 (ran 𝐵 ⊆ dom 𝐴 → dom (𝐴𝐵) = dom 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wss 3157  cop 3625   class class class wbr 4033  dom cdm 4663  ran crn 4664  ccom 4667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674
This theorem is referenced by:  dmcoeq  4938  fnco  5366
  Copyright terms: Public domain W3C validator