ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iss GIF version

Theorem iss 5047
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
iss (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴))

Proof of Theorem iss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3218 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ I ))
2 vex 2802 . . . . . . . . 9 𝑥 ∈ V
3 vex 2802 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 4923 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
54a1i 9 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴))
61, 5jcad 307 . . . . . 6 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴)))
7 df-br 4083 . . . . . . . . 9 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
83ideq 4871 . . . . . . . . 9 (𝑥 I 𝑦𝑥 = 𝑦)
97, 8bitr3i 186 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
102eldm2 4918 . . . . . . . . . 10 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
11 opeq2 3857 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
1211eleq1d 2298 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
1312biimprcd 160 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
149, 13biimtrid 152 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
151, 14sylcom 28 . . . . . . . . . . 11 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1615exlimdv 1865 . . . . . . . . . 10 (𝐴 ⊆ I → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1710, 16biimtrid 152 . . . . . . . . 9 (𝐴 ⊆ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1812imbi2d 230 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴) ↔ (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1917, 18syl5ibcom 155 . . . . . . . 8 (𝐴 ⊆ I → (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
209, 19biimtrid 152 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
2120impd 254 . . . . . 6 (𝐴 ⊆ I → ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴) → ⟨𝑥, 𝑦⟩ ∈ 𝐴))
226, 21impbid 129 . . . . 5 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴)))
233opelres 5006 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴))
2422, 23bitr4di 198 . . . 4 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴)))
2524alrimivv 1921 . . 3 (𝐴 ⊆ I → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴)))
26 reli 4848 . . . . 5 Rel I
27 relss 4803 . . . . 5 (𝐴 ⊆ I → (Rel I → Rel 𝐴))
2826, 27mpi 15 . . . 4 (𝐴 ⊆ I → Rel 𝐴)
29 relres 5029 . . . 4 Rel ( I ↾ dom 𝐴)
30 eqrel 4805 . . . 4 ((Rel 𝐴 ∧ Rel ( I ↾ dom 𝐴)) → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴))))
3128, 29, 30sylancl 413 . . 3 (𝐴 ⊆ I → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴))))
3225, 31mpbird 167 . 2 (𝐴 ⊆ I → 𝐴 = ( I ↾ dom 𝐴))
33 resss 5025 . . 3 ( I ↾ dom 𝐴) ⊆ I
34 sseq1 3247 . . 3 (𝐴 = ( I ↾ dom 𝐴) → (𝐴 ⊆ I ↔ ( I ↾ dom 𝐴) ⊆ I ))
3533, 34mpbiri 168 . 2 (𝐴 = ( I ↾ dom 𝐴) → 𝐴 ⊆ I )
3632, 35impbii 126 1 (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1393   = wceq 1395  wex 1538  wcel 2200  wss 3197  cop 3669   class class class wbr 4082   I cid 4376  dom cdm 4716  cres 4718  Rel wrel 4721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-id 4381  df-xp 4722  df-rel 4723  df-dm 4726  df-res 4728
This theorem is referenced by:  funcocnv2  5593
  Copyright terms: Public domain W3C validator