Step | Hyp | Ref
| Expression |
1 | | ssel 3151 |
. . . . . . 7
⊢ (𝐴 ⊆ I → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑦〉 ∈ I )) |
2 | | vex 2742 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
3 | | vex 2742 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
4 | 2, 3 | opeldm 4832 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴) |
5 | 4 | a1i 9 |
. . . . . . 7
⊢ (𝐴 ⊆ I → (〈𝑥, 𝑦〉 ∈ 𝐴 → 𝑥 ∈ dom 𝐴)) |
6 | 1, 5 | jcad 307 |
. . . . . 6
⊢ (𝐴 ⊆ I → (〈𝑥, 𝑦〉 ∈ 𝐴 → (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ dom 𝐴))) |
7 | | df-br 4006 |
. . . . . . . . 9
⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) |
8 | 3 | ideq 4781 |
. . . . . . . . 9
⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
9 | 7, 8 | bitr3i 186 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ I ↔ 𝑥 = 𝑦) |
10 | 2 | eldm2 4827 |
. . . . . . . . . 10
⊢ (𝑥 ∈ dom 𝐴 ↔ ∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴) |
11 | | opeq2 3781 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → 〈𝑥, 𝑥〉 = 〈𝑥, 𝑦〉) |
12 | 11 | eleq1d 2246 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (〈𝑥, 𝑥〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ 𝐴)) |
13 | 12 | biimprcd 160 |
. . . . . . . . . . . . 13
⊢
(〈𝑥, 𝑦〉 ∈ 𝐴 → (𝑥 = 𝑦 → 〈𝑥, 𝑥〉 ∈ 𝐴)) |
14 | 9, 13 | biimtrid 152 |
. . . . . . . . . . . 12
⊢
(〈𝑥, 𝑦〉 ∈ 𝐴 → (〈𝑥, 𝑦〉 ∈ I → 〈𝑥, 𝑥〉 ∈ 𝐴)) |
15 | 1, 14 | sylcom 28 |
. . . . . . . . . . 11
⊢ (𝐴 ⊆ I → (〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑥〉 ∈ 𝐴)) |
16 | 15 | exlimdv 1819 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ I → (∃𝑦〈𝑥, 𝑦〉 ∈ 𝐴 → 〈𝑥, 𝑥〉 ∈ 𝐴)) |
17 | 10, 16 | biimtrid 152 |
. . . . . . . . 9
⊢ (𝐴 ⊆ I → (𝑥 ∈ dom 𝐴 → 〈𝑥, 𝑥〉 ∈ 𝐴)) |
18 | 12 | imbi2d 230 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐴 → 〈𝑥, 𝑥〉 ∈ 𝐴) ↔ (𝑥 ∈ dom 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐴))) |
19 | 17, 18 | syl5ibcom 155 |
. . . . . . . 8
⊢ (𝐴 ⊆ I → (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐴))) |
20 | 9, 19 | biimtrid 152 |
. . . . . . 7
⊢ (𝐴 ⊆ I → (〈𝑥, 𝑦〉 ∈ I → (𝑥 ∈ dom 𝐴 → 〈𝑥, 𝑦〉 ∈ 𝐴))) |
21 | 20 | impd 254 |
. . . . . 6
⊢ (𝐴 ⊆ I → ((〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ dom 𝐴) → 〈𝑥, 𝑦〉 ∈ 𝐴)) |
22 | 6, 21 | impbid 129 |
. . . . 5
⊢ (𝐴 ⊆ I → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ dom 𝐴))) |
23 | 3 | opelres 4914 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ ( I ↾ dom
𝐴) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 𝑥 ∈ dom 𝐴)) |
24 | 22, 23 | bitr4di 198 |
. . . 4
⊢ (𝐴 ⊆ I → (〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ( I ↾ dom 𝐴))) |
25 | 24 | alrimivv 1875 |
. . 3
⊢ (𝐴 ⊆ I → ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ( I ↾ dom 𝐴))) |
26 | | reli 4758 |
. . . . 5
⊢ Rel
I |
27 | | relss 4715 |
. . . . 5
⊢ (𝐴 ⊆ I → (Rel I →
Rel 𝐴)) |
28 | 26, 27 | mpi 15 |
. . . 4
⊢ (𝐴 ⊆ I → Rel 𝐴) |
29 | | relres 4937 |
. . . 4
⊢ Rel ( I
↾ dom 𝐴) |
30 | | eqrel 4717 |
. . . 4
⊢ ((Rel
𝐴 ∧ Rel ( I ↾ dom
𝐴)) → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ( I ↾ dom 𝐴)))) |
31 | 28, 29, 30 | sylancl 413 |
. . 3
⊢ (𝐴 ⊆ I → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥∀𝑦(〈𝑥, 𝑦〉 ∈ 𝐴 ↔ 〈𝑥, 𝑦〉 ∈ ( I ↾ dom 𝐴)))) |
32 | 25, 31 | mpbird 167 |
. 2
⊢ (𝐴 ⊆ I → 𝐴 = ( I ↾ dom 𝐴)) |
33 | | resss 4933 |
. . 3
⊢ ( I
↾ dom 𝐴) ⊆
I |
34 | | sseq1 3180 |
. . 3
⊢ (𝐴 = ( I ↾ dom 𝐴) → (𝐴 ⊆ I ↔ ( I ↾ dom 𝐴) ⊆ I )) |
35 | 33, 34 | mpbiri 168 |
. 2
⊢ (𝐴 = ( I ↾ dom 𝐴) → 𝐴 ⊆ I ) |
36 | 32, 35 | impbii 126 |
1
⊢ (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴)) |