ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iss GIF version

Theorem iss 5013
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
iss (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴))

Proof of Theorem iss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3191 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑦⟩ ∈ I ))
2 vex 2776 . . . . . . . . 9 𝑥 ∈ V
3 vex 2776 . . . . . . . . 9 𝑦 ∈ V
42, 3opeldm 4889 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴)
54a1i 9 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴𝑥 ∈ dom 𝐴))
61, 5jcad 307 . . . . . 6 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴)))
7 df-br 4051 . . . . . . . . 9 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
83ideq 4837 . . . . . . . . 9 (𝑥 I 𝑦𝑥 = 𝑦)
97, 8bitr3i 186 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ I ↔ 𝑥 = 𝑦)
102eldm2 4884 . . . . . . . . . 10 (𝑥 ∈ dom 𝐴 ↔ ∃𝑦𝑥, 𝑦⟩ ∈ 𝐴)
11 opeq2 3825 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑦⟩)
1211eleq1d 2275 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (⟨𝑥, 𝑥⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐴))
1312biimprcd 160 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (𝑥 = 𝑦 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
149, 13biimtrid 152 . . . . . . . . . . . 12 (⟨𝑥, 𝑦⟩ ∈ 𝐴 → (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
151, 14sylcom 28 . . . . . . . . . . 11 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1615exlimdv 1843 . . . . . . . . . 10 (𝐴 ⊆ I → (∃𝑦𝑥, 𝑦⟩ ∈ 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1710, 16biimtrid 152 . . . . . . . . 9 (𝐴 ⊆ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴))
1812imbi2d 230 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑥⟩ ∈ 𝐴) ↔ (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
1917, 18syl5ibcom 155 . . . . . . . 8 (𝐴 ⊆ I → (𝑥 = 𝑦 → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
209, 19biimtrid 152 . . . . . . 7 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ I → (𝑥 ∈ dom 𝐴 → ⟨𝑥, 𝑦⟩ ∈ 𝐴)))
2120impd 254 . . . . . 6 (𝐴 ⊆ I → ((⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴) → ⟨𝑥, 𝑦⟩ ∈ 𝐴))
226, 21impbid 129 . . . . 5 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴)))
233opelres 4972 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ 𝑥 ∈ dom 𝐴))
2422, 23bitr4di 198 . . . 4 (𝐴 ⊆ I → (⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴)))
2524alrimivv 1899 . . 3 (𝐴 ⊆ I → ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴)))
26 reli 4814 . . . . 5 Rel I
27 relss 4769 . . . . 5 (𝐴 ⊆ I → (Rel I → Rel 𝐴))
2826, 27mpi 15 . . . 4 (𝐴 ⊆ I → Rel 𝐴)
29 relres 4995 . . . 4 Rel ( I ↾ dom 𝐴)
30 eqrel 4771 . . . 4 ((Rel 𝐴 ∧ Rel ( I ↾ dom 𝐴)) → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴))))
3128, 29, 30sylancl 413 . . 3 (𝐴 ⊆ I → (𝐴 = ( I ↾ dom 𝐴) ↔ ∀𝑥𝑦(⟨𝑥, 𝑦⟩ ∈ 𝐴 ↔ ⟨𝑥, 𝑦⟩ ∈ ( I ↾ dom 𝐴))))
3225, 31mpbird 167 . 2 (𝐴 ⊆ I → 𝐴 = ( I ↾ dom 𝐴))
33 resss 4991 . . 3 ( I ↾ dom 𝐴) ⊆ I
34 sseq1 3220 . . 3 (𝐴 = ( I ↾ dom 𝐴) → (𝐴 ⊆ I ↔ ( I ↾ dom 𝐴) ⊆ I ))
3533, 34mpbiri 168 . 2 (𝐴 = ( I ↾ dom 𝐴) → 𝐴 ⊆ I )
3632, 35impbii 126 1 (𝐴 ⊆ I ↔ 𝐴 = ( I ↾ dom 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1371   = wceq 1373  wex 1516  wcel 2177  wss 3170  cop 3640   class class class wbr 4050   I cid 4342  dom cdm 4682  cres 4684  Rel wrel 4687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-id 4347  df-xp 4688  df-rel 4689  df-dm 4692  df-res 4694
This theorem is referenced by:  funcocnv2  5558
  Copyright terms: Public domain W3C validator