MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equs5eALT Structured version   Visualization version   GIF version

Theorem equs5eALT 2366
Description: Alternate proof of equs5e 2459. Uses ax-12 2174 but not ax-13 2373. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
equs5eALT (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))

Proof of Theorem equs5eALT
StepHypRef Expression
1 nfa1 2151 . 2 𝑥𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)
2 hbe1 2142 . . . . 5 (∃𝑦𝜑 → ∀𝑦𝑦𝜑)
3219.23bi 2187 . . . 4 (𝜑 → ∀𝑦𝑦𝜑)
4 ax-12 2174 . . . 4 (𝑥 = 𝑦 → (∀𝑦𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)))
53, 4syl5 34 . . 3 (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)))
65imp 406 . 2 ((𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
71, 6exlimi 2213 1 (∃𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wex 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-10 2140  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-nf 1790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator