| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equs5eALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of equs5e 2463. Uses ax-12 2177 but not ax-13 2377. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| equs5eALT | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2151 | . 2 ⊢ Ⅎ𝑥∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑) | |
| 2 | hbe1 2143 | . . . . 5 ⊢ (∃𝑦𝜑 → ∀𝑦∃𝑦𝜑) | |
| 3 | 2 | 19.23bi 2191 | . . . 4 ⊢ (𝜑 → ∀𝑦∃𝑦𝜑) |
| 4 | ax-12 2177 | . . . 4 ⊢ (𝑥 = 𝑦 → (∀𝑦∃𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))) | |
| 5 | 3, 4 | syl5 34 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑))) |
| 6 | 5 | imp 406 | . 2 ⊢ ((𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
| 7 | 1, 6 | exlimi 2217 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |