MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop4 Structured version   Visualization version   GIF version

Theorem ustuqtop4 22850
Description: Lemma for ustuqtop 22852. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
Distinct variable groups:   𝑣,𝑞,𝑝,𝑈   𝑋,𝑝,𝑞,𝑣   𝑎,𝑏,𝑝,𝑞,𝑁   𝑣,𝑎,𝑈,𝑏   𝑋,𝑎,𝑏
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop4
Dummy variables 𝑤 𝑟 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋))
2 simplr 768 . . . . . . . 8 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) → 𝑢𝑈)
3 eqid 2798 . . . . . . . . . . 11 (𝑢 “ {𝑝}) = (𝑢 “ {𝑝})
4 imaeq1 5891 . . . . . . . . . . . 12 (𝑤 = 𝑢 → (𝑤 “ {𝑝}) = (𝑢 “ {𝑝}))
54rspceeqv 3586 . . . . . . . . . . 11 ((𝑢𝑈 ∧ (𝑢 “ {𝑝}) = (𝑢 “ {𝑝})) → ∃𝑤𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝}))
63, 5mpan2 690 . . . . . . . . . 10 (𝑢𝑈 → ∃𝑤𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝}))
76adantl 485 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑢𝑈) → ∃𝑤𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝}))
8 imaexg 7602 . . . . . . . . . 10 (𝑢𝑈 → (𝑢 “ {𝑝}) ∈ V)
9 utopustuq.1 . . . . . . . . . . 11 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
109ustuqtoplem 22845 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ (𝑢 “ {𝑝}) ∈ V) → ((𝑢 “ {𝑝}) ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝})))
118, 10sylan2 595 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑢𝑈) → ((𝑢 “ {𝑝}) ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝})))
127, 11mpbird 260 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑢𝑈) → (𝑢 “ {𝑝}) ∈ (𝑁𝑝))
131, 2, 12syl2anc 587 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) → (𝑢 “ {𝑝}) ∈ (𝑁𝑝))
14 simp-5l 784 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋))
151simpld 498 . . . . . . . . . . . . . 14 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) → 𝑈 ∈ (UnifOn‘𝑋))
16 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) → 𝑝𝑋)
17 ustimasn 22834 . . . . . . . . . . . . . 14 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈𝑝𝑋) → (𝑢 “ {𝑝}) ⊆ 𝑋)
1815, 2, 16, 17syl3anc 1368 . . . . . . . . . . . . 13 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) → (𝑢 “ {𝑝}) ⊆ 𝑋)
1918sselda 3915 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑞𝑋)
2014, 19jca 515 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋))
21 simplr 768 . . . . . . . . . . . . . . . . 17 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑞 ∈ (𝑢 “ {𝑝}))
22 simp-6l 786 . . . . . . . . . . . . . . . . . . 19 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑈 ∈ (UnifOn‘𝑋))
23 simp-4r 783 . . . . . . . . . . . . . . . . . . 19 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑢𝑈)
24 ustrel 22817 . . . . . . . . . . . . . . . . . . 19 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢𝑈) → Rel 𝑢)
2522, 23, 24syl2anc 587 . . . . . . . . . . . . . . . . . 18 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → Rel 𝑢)
26 elrelimasn 5920 . . . . . . . . . . . . . . . . . 18 (Rel 𝑢 → (𝑞 ∈ (𝑢 “ {𝑝}) ↔ 𝑝𝑢𝑞))
2725, 26syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑞 ∈ (𝑢 “ {𝑝}) ↔ 𝑝𝑢𝑞))
2821, 27mpbid 235 . . . . . . . . . . . . . . . 16 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑝𝑢𝑞)
29 simpr 488 . . . . . . . . . . . . . . . . 17 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑟 ∈ (𝑢 “ {𝑞}))
30 elrelimasn 5920 . . . . . . . . . . . . . . . . . 18 (Rel 𝑢 → (𝑟 ∈ (𝑢 “ {𝑞}) ↔ 𝑞𝑢𝑟))
3125, 30syl 17 . . . . . . . . . . . . . . . . 17 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑟 ∈ (𝑢 “ {𝑞}) ↔ 𝑞𝑢𝑟))
3229, 31mpbid 235 . . . . . . . . . . . . . . . 16 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑞𝑢𝑟)
33 vex 3444 . . . . . . . . . . . . . . . . . . 19 𝑝 ∈ V
34 vex 3444 . . . . . . . . . . . . . . . . . . 19 𝑟 ∈ V
3533, 34brco 5705 . . . . . . . . . . . . . . . . . 18 (𝑝(𝑢𝑢)𝑟 ↔ ∃𝑞(𝑝𝑢𝑞𝑞𝑢𝑟))
3635biimpri 231 . . . . . . . . . . . . . . . . 17 (∃𝑞(𝑝𝑢𝑞𝑞𝑢𝑟) → 𝑝(𝑢𝑢)𝑟)
373619.23bi 2188 . . . . . . . . . . . . . . . 16 ((𝑝𝑢𝑞𝑞𝑢𝑟) → 𝑝(𝑢𝑢)𝑟)
3828, 32, 37syl2anc 587 . . . . . . . . . . . . . . 15 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑝(𝑢𝑢)𝑟)
39 simpllr 775 . . . . . . . . . . . . . . . 16 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑢𝑢) ⊆ 𝑤)
4039ssbrd 5073 . . . . . . . . . . . . . . 15 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑝(𝑢𝑢)𝑟𝑝𝑤𝑟))
4138, 40mpd 15 . . . . . . . . . . . . . 14 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑝𝑤𝑟)
42 simp-5r 785 . . . . . . . . . . . . . . . 16 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑤𝑈)
43 ustrel 22817 . . . . . . . . . . . . . . . 16 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → Rel 𝑤)
4422, 42, 43syl2anc 587 . . . . . . . . . . . . . . 15 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → Rel 𝑤)
45 elrelimasn 5920 . . . . . . . . . . . . . . 15 (Rel 𝑤 → (𝑟 ∈ (𝑤 “ {𝑝}) ↔ 𝑝𝑤𝑟))
4644, 45syl 17 . . . . . . . . . . . . . 14 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑟 ∈ (𝑤 “ {𝑝}) ↔ 𝑝𝑤𝑟))
4741, 46mpbird 260 . . . . . . . . . . . . 13 (((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑟 ∈ (𝑤 “ {𝑝}))
4847ex 416 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑟 ∈ (𝑢 “ {𝑞}) → 𝑟 ∈ (𝑤 “ {𝑝})))
4948ssrdv 3921 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}))
50 simp-4r 783 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑤𝑈)
5116adantr 484 . . . . . . . . . . . 12 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑝𝑋)
52 ustimasn 22834 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈𝑝𝑋) → (𝑤 “ {𝑝}) ⊆ 𝑋)
5314, 50, 51, 52syl3anc 1368 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑤 “ {𝑝}) ⊆ 𝑋)
5420, 49, 533jca 1125 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋))
55 simpllr 775 . . . . . . . . . . 11 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑢𝑈)
56 eqidd 2799 . . . . . . . . . . . . . 14 (𝑢𝑈 → (𝑢 “ {𝑞}) = (𝑢 “ {𝑞}))
57 imaeq1 5891 . . . . . . . . . . . . . . 15 (𝑤 = 𝑢 → (𝑤 “ {𝑞}) = (𝑢 “ {𝑞}))
5857rspceeqv 3586 . . . . . . . . . . . . . 14 ((𝑢𝑈 ∧ (𝑢 “ {𝑞}) = (𝑢 “ {𝑞})) → ∃𝑤𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞}))
5956, 58mpdan 686 . . . . . . . . . . . . 13 (𝑢𝑈 → ∃𝑤𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞}))
6059adantl 485 . . . . . . . . . . . 12 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑢𝑈) → ∃𝑤𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞}))
61 imaexg 7602 . . . . . . . . . . . . 13 (𝑢𝑈 → (𝑢 “ {𝑞}) ∈ V)
629ustuqtoplem 22845 . . . . . . . . . . . . 13 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ∈ V) → ((𝑢 “ {𝑞}) ∈ (𝑁𝑞) ↔ ∃𝑤𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞})))
6361, 62sylan2 595 . . . . . . . . . . . 12 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑢𝑈) → ((𝑢 “ {𝑞}) ∈ (𝑁𝑞) ↔ ∃𝑤𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞})))
6460, 63mpbird 260 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑢𝑈) → (𝑢 “ {𝑞}) ∈ (𝑁𝑞))
6514, 19, 55, 64syl21anc 836 . . . . . . . . . 10 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑢 “ {𝑞}) ∈ (𝑁𝑞))
6654, 65jca 515 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)))
67 imaexg 7602 . . . . . . . . . . 11 (𝑤𝑈 → (𝑤 “ {𝑝}) ∈ V)
68 sseq2 3941 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑤 “ {𝑝}) → ((𝑢 “ {𝑞}) ⊆ 𝑏 ↔ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝})))
69 sseq1 3940 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑤 “ {𝑝}) → (𝑏𝑋 ↔ (𝑤 “ {𝑝}) ⊆ 𝑋))
7068, 693anbi23d 1436 . . . . . . . . . . . . . . 15 (𝑏 = (𝑤 “ {𝑝}) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ↔ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋)))
7170anbi1d 632 . . . . . . . . . . . . . 14 (𝑏 = (𝑤 “ {𝑝}) → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ↔ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞))))
7271anbi1d 632 . . . . . . . . . . . . 13 (𝑏 = (𝑤 “ {𝑝}) → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ∧ 𝑢𝑈) ↔ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ∧ 𝑢𝑈)))
73 eleq1 2877 . . . . . . . . . . . . 13 (𝑏 = (𝑤 “ {𝑝}) → (𝑏 ∈ (𝑁𝑞) ↔ (𝑤 “ {𝑝}) ∈ (𝑁𝑞)))
7472, 73imbi12d 348 . . . . . . . . . . . 12 (𝑏 = (𝑤 “ {𝑝}) → ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ∧ 𝑢𝑈) → 𝑏 ∈ (𝑁𝑞)) ↔ (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ∧ 𝑢𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁𝑞))))
75 sseq1 3940 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝑢 “ {𝑞}) → (𝑎𝑏 ↔ (𝑢 “ {𝑞}) ⊆ 𝑏))
76753anbi2d 1438 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑢 “ {𝑞}) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑎𝑏𝑏𝑋) ↔ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋)))
77 eleq1 2877 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑢 “ {𝑞}) → (𝑎 ∈ (𝑁𝑞) ↔ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)))
7876, 77anbi12d 633 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑢 “ {𝑞}) → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑞)) ↔ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞))))
7978imbi1d 345 . . . . . . . . . . . . . . 15 (𝑎 = (𝑢 “ {𝑞}) → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑞)) → 𝑏 ∈ (𝑁𝑞)) ↔ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) → 𝑏 ∈ (𝑁𝑞))))
80 eleq1 2877 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑞 → (𝑝𝑋𝑞𝑋))
8180anbi2d 631 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑞 → ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋)))
82813anbi1d 1437 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑞 → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ↔ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑎𝑏𝑏𝑋)))
83 fveq2 6645 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑞 → (𝑁𝑝) = (𝑁𝑞))
8483eleq2d 2875 . . . . . . . . . . . . . . . . . 18 (𝑝 = 𝑞 → (𝑎 ∈ (𝑁𝑝) ↔ 𝑎 ∈ (𝑁𝑞)))
8582, 84anbi12d 633 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑞 → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ↔ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑞))))
8683eleq2d 2875 . . . . . . . . . . . . . . . . 17 (𝑝 = 𝑞 → (𝑏 ∈ (𝑁𝑝) ↔ 𝑏 ∈ (𝑁𝑞)))
8785, 86imbi12d 348 . . . . . . . . . . . . . . . 16 (𝑝 = 𝑞 → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝)) ↔ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑞)) → 𝑏 ∈ (𝑁𝑞))))
889ustuqtop1 22847 . . . . . . . . . . . . . . . 16 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
8987, 88chvarvv 2005 . . . . . . . . . . . . . . 15 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑞)) → 𝑏 ∈ (𝑁𝑞))
9079, 89vtoclg 3515 . . . . . . . . . . . . . 14 ((𝑢 “ {𝑞}) ∈ V → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) → 𝑏 ∈ (𝑁𝑞)))
9161, 90syl 17 . . . . . . . . . . . . 13 (𝑢𝑈 → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) → 𝑏 ∈ (𝑁𝑞)))
9291impcom 411 . . . . . . . . . . . 12 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏𝑏𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ∧ 𝑢𝑈) → 𝑏 ∈ (𝑁𝑞))
9374, 92vtoclg 3515 . . . . . . . . . . 11 ((𝑤 “ {𝑝}) ∈ V → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ∧ 𝑢𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁𝑞)))
9467, 93syl 17 . . . . . . . . . 10 (𝑤𝑈 → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ∧ 𝑢𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁𝑞)))
9594impcom 411 . . . . . . . . 9 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁𝑞)) ∧ 𝑢𝑈) ∧ 𝑤𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁𝑞))
9666, 55, 50, 95syl21anc 836 . . . . . . . 8 ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑤 “ {𝑝}) ∈ (𝑁𝑞))
9796ralrimiva 3149 . . . . . . 7 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) → ∀𝑞 ∈ (𝑢 “ {𝑝})(𝑤 “ {𝑝}) ∈ (𝑁𝑞))
98 raleq 3358 . . . . . . . 8 (𝑏 = (𝑢 “ {𝑝}) → (∀𝑞𝑏 (𝑤 “ {𝑝}) ∈ (𝑁𝑞) ↔ ∀𝑞 ∈ (𝑢 “ {𝑝})(𝑤 “ {𝑝}) ∈ (𝑁𝑞)))
9998rspcev 3571 . . . . . . 7 (((𝑢 “ {𝑝}) ∈ (𝑁𝑝) ∧ ∀𝑞 ∈ (𝑢 “ {𝑝})(𝑤 “ {𝑝}) ∈ (𝑁𝑞)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 (𝑤 “ {𝑝}) ∈ (𝑁𝑞))
10013, 97, 99syl2anc 587 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑢𝑈) ∧ (𝑢𝑢) ⊆ 𝑤) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 (𝑤 “ {𝑝}) ∈ (𝑁𝑞))
101 ustexhalf 22816 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → ∃𝑢𝑈 (𝑢𝑢) ⊆ 𝑤)
102101adantlr 714 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) → ∃𝑢𝑈 (𝑢𝑢) ⊆ 𝑤)
103100, 102r19.29a 3248 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 (𝑤 “ {𝑝}) ∈ (𝑁𝑞))
104103adantr 484 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 (𝑤 “ {𝑝}) ∈ (𝑁𝑞))
105 eleq1 2877 . . . . . 6 (𝑎 = (𝑤 “ {𝑝}) → (𝑎 ∈ (𝑁𝑞) ↔ (𝑤 “ {𝑝}) ∈ (𝑁𝑞)))
106105rexralbidv 3260 . . . . 5 (𝑎 = (𝑤 “ {𝑝}) → (∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞) ↔ ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 (𝑤 “ {𝑝}) ∈ (𝑁𝑞)))
107106adantl 485 . . . 4 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞) ↔ ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 (𝑤 “ {𝑝}) ∈ (𝑁𝑞)))
108104, 107mpbird 260 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
109108adantllr 718 . 2 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
110 vex 3444 . . . 4 𝑎 ∈ V
1119ustuqtoplem 22845 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
112110, 111mpan2 690 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
113112biimpa 480 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
114109, 113r19.29a 3248 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑞𝑏 𝑎 ∈ (𝑁𝑞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  Vcvv 3441  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  ran crn 5520  cima 5522  ccom 5523  Rel wrel 5524  cfv 6324  UnifOncust 22805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ust 22806
This theorem is referenced by:  ustuqtop  22852  utopsnneiplem  22853
  Copyright terms: Public domain W3C validator