Step | Hyp | Ref
| Expression |
1 | | simplll 771 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋)) |
2 | | simplr 765 |
. . . . . . . 8
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) → 𝑢 ∈ 𝑈) |
3 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑢 “ {𝑝}) = (𝑢 “ {𝑝}) |
4 | | imaeq1 5953 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑢 → (𝑤 “ {𝑝}) = (𝑢 “ {𝑝})) |
5 | 4 | rspceeqv 3567 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ 𝑈 ∧ (𝑢 “ {𝑝}) = (𝑢 “ {𝑝})) → ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝})) |
6 | 3, 5 | mpan2 687 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑈 → ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝})) |
7 | 6 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑢 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝})) |
8 | | imaexg 7736 |
. . . . . . . . . 10
⊢ (𝑢 ∈ 𝑈 → (𝑢 “ {𝑝}) ∈ V) |
9 | | utopustuq.1 |
. . . . . . . . . . 11
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
10 | 9 | ustuqtoplem 23299 |
. . . . . . . . . 10
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ (𝑢 “ {𝑝}) ∈ V) → ((𝑢 “ {𝑝}) ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝}))) |
11 | 8, 10 | sylan2 592 |
. . . . . . . . 9
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑢 ∈ 𝑈) → ((𝑢 “ {𝑝}) ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑝}) = (𝑤 “ {𝑝}))) |
12 | 7, 11 | mpbird 256 |
. . . . . . . 8
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑢 ∈ 𝑈) → (𝑢 “ {𝑝}) ∈ (𝑁‘𝑝)) |
13 | 1, 2, 12 | syl2anc 583 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) → (𝑢 “ {𝑝}) ∈ (𝑁‘𝑝)) |
14 | | simp-5l 781 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑈 ∈ (UnifOn‘𝑋)) |
15 | 1 | simpld 494 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) → 𝑈 ∈ (UnifOn‘𝑋)) |
16 | | simp-4r 780 |
. . . . . . . . . . . . . 14
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) → 𝑝 ∈ 𝑋) |
17 | | ustimasn 23288 |
. . . . . . . . . . . . . 14
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋) → (𝑢 “ {𝑝}) ⊆ 𝑋) |
18 | 15, 2, 16, 17 | syl3anc 1369 |
. . . . . . . . . . . . 13
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) → (𝑢 “ {𝑝}) ⊆ 𝑋) |
19 | 18 | sselda 3917 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑞 ∈ 𝑋) |
20 | 14, 19 | jca 511 |
. . . . . . . . . . 11
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋)) |
21 | | simplr 765 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑞 ∈ (𝑢 “ {𝑝})) |
22 | | simp-6l 783 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑈 ∈ (UnifOn‘𝑋)) |
23 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑢 ∈ 𝑈) |
24 | | ustrel 23271 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑢 ∈ 𝑈) → Rel 𝑢) |
25 | 22, 23, 24 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → Rel 𝑢) |
26 | | elrelimasn 5982 |
. . . . . . . . . . . . . . . . . 18
⊢ (Rel
𝑢 → (𝑞 ∈ (𝑢 “ {𝑝}) ↔ 𝑝𝑢𝑞)) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑞 ∈ (𝑢 “ {𝑝}) ↔ 𝑝𝑢𝑞)) |
28 | 21, 27 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑝𝑢𝑞) |
29 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑟 ∈ (𝑢 “ {𝑞})) |
30 | | elrelimasn 5982 |
. . . . . . . . . . . . . . . . . 18
⊢ (Rel
𝑢 → (𝑟 ∈ (𝑢 “ {𝑞}) ↔ 𝑞𝑢𝑟)) |
31 | 25, 30 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑟 ∈ (𝑢 “ {𝑞}) ↔ 𝑞𝑢𝑟)) |
32 | 29, 31 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑞𝑢𝑟) |
33 | | vex 3426 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑝 ∈ V |
34 | | vex 3426 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑟 ∈ V |
35 | 33, 34 | brco 5768 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝(𝑢 ∘ 𝑢)𝑟 ↔ ∃𝑞(𝑝𝑢𝑞 ∧ 𝑞𝑢𝑟)) |
36 | 35 | biimpri 227 |
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑞(𝑝𝑢𝑞 ∧ 𝑞𝑢𝑟) → 𝑝(𝑢 ∘ 𝑢)𝑟) |
37 | 36 | 19.23bi 2186 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑝𝑢𝑞 ∧ 𝑞𝑢𝑟) → 𝑝(𝑢 ∘ 𝑢)𝑟) |
38 | 28, 32, 37 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑝(𝑢 ∘ 𝑢)𝑟) |
39 | | simpllr 772 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑢 ∘ 𝑢) ⊆ 𝑤) |
40 | 39 | ssbrd 5113 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑝(𝑢 ∘ 𝑢)𝑟 → 𝑝𝑤𝑟)) |
41 | 38, 40 | mpd 15 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑝𝑤𝑟) |
42 | | simp-5r 782 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑤 ∈ 𝑈) |
43 | | ustrel 23271 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → Rel 𝑤) |
44 | 22, 42, 43 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → Rel 𝑤) |
45 | | elrelimasn 5982 |
. . . . . . . . . . . . . . 15
⊢ (Rel
𝑤 → (𝑟 ∈ (𝑤 “ {𝑝}) ↔ 𝑝𝑤𝑟)) |
46 | 44, 45 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → (𝑟 ∈ (𝑤 “ {𝑝}) ↔ 𝑝𝑤𝑟)) |
47 | 41, 46 | mpbird 256 |
. . . . . . . . . . . . 13
⊢
(((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) ∧ 𝑟 ∈ (𝑢 “ {𝑞})) → 𝑟 ∈ (𝑤 “ {𝑝})) |
48 | 47 | ex 412 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑟 ∈ (𝑢 “ {𝑞}) → 𝑟 ∈ (𝑤 “ {𝑝}))) |
49 | 48 | ssrdv 3923 |
. . . . . . . . . . 11
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝})) |
50 | | simp-4r 780 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑤 ∈ 𝑈) |
51 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑝 ∈ 𝑋) |
52 | | ustimasn 23288 |
. . . . . . . . . . . 12
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋) → (𝑤 “ {𝑝}) ⊆ 𝑋) |
53 | 14, 50, 51, 52 | syl3anc 1369 |
. . . . . . . . . . 11
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑤 “ {𝑝}) ⊆ 𝑋) |
54 | 20, 49, 53 | 3jca 1126 |
. . . . . . . . . 10
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋)) |
55 | | simpllr 772 |
. . . . . . . . . . 11
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → 𝑢 ∈ 𝑈) |
56 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ 𝑈 → (𝑢 “ {𝑞}) = (𝑢 “ {𝑞})) |
57 | | imaeq1 5953 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑢 → (𝑤 “ {𝑞}) = (𝑢 “ {𝑞})) |
58 | 57 | rspceeqv 3567 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 ∈ 𝑈 ∧ (𝑢 “ {𝑞}) = (𝑢 “ {𝑞})) → ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞})) |
59 | 56, 58 | mpdan 683 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ 𝑈 → ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞})) |
60 | 59 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑢 ∈ 𝑈) → ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞})) |
61 | | imaexg 7736 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ 𝑈 → (𝑢 “ {𝑞}) ∈ V) |
62 | 9 | ustuqtoplem 23299 |
. . . . . . . . . . . . 13
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ V) → ((𝑢 “ {𝑞}) ∈ (𝑁‘𝑞) ↔ ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞}))) |
63 | 61, 62 | sylan2 592 |
. . . . . . . . . . . 12
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑢 ∈ 𝑈) → ((𝑢 “ {𝑞}) ∈ (𝑁‘𝑞) ↔ ∃𝑤 ∈ 𝑈 (𝑢 “ {𝑞}) = (𝑤 “ {𝑞}))) |
64 | 60, 63 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑢 ∈ 𝑈) → (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) |
65 | 14, 19, 55, 64 | syl21anc 834 |
. . . . . . . . . 10
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) |
66 | 54, 65 | jca 511 |
. . . . . . . . 9
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞))) |
67 | | imaexg 7736 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ 𝑈 → (𝑤 “ {𝑝}) ∈ V) |
68 | | sseq2 3943 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑤 “ {𝑝}) → ((𝑢 “ {𝑞}) ⊆ 𝑏 ↔ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}))) |
69 | | sseq1 3942 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏 = (𝑤 “ {𝑝}) → (𝑏 ⊆ 𝑋 ↔ (𝑤 “ {𝑝}) ⊆ 𝑋)) |
70 | 68, 69 | 3anbi23d 1437 |
. . . . . . . . . . . . . . 15
⊢ (𝑏 = (𝑤 “ {𝑝}) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ↔ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋))) |
71 | 70 | anbi1d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑏 = (𝑤 “ {𝑝}) → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ↔ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)))) |
72 | 71 | anbi1d 629 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝑤 “ {𝑝}) → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ∧ 𝑢 ∈ 𝑈) ↔ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ∧ 𝑢 ∈ 𝑈))) |
73 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑏 = (𝑤 “ {𝑝}) → (𝑏 ∈ (𝑁‘𝑞) ↔ (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞))) |
74 | 72, 73 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑏 = (𝑤 “ {𝑝}) → ((((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ∧ 𝑢 ∈ 𝑈) → 𝑏 ∈ (𝑁‘𝑞)) ↔ (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ∧ 𝑢 ∈ 𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)))) |
75 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (𝑢 “ {𝑞}) → (𝑎 ⊆ 𝑏 ↔ (𝑢 “ {𝑞}) ⊆ 𝑏)) |
76 | 75 | 3anbi2d 1439 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑢 “ {𝑞}) → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ↔ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋))) |
77 | | eleq1 2826 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝑢 “ {𝑞}) → (𝑎 ∈ (𝑁‘𝑞) ↔ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞))) |
78 | 76, 77 | anbi12d 630 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = (𝑢 “ {𝑞}) → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑞)) ↔ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)))) |
79 | 78 | imbi1d 341 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = (𝑢 “ {𝑞}) → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑞)) → 𝑏 ∈ (𝑁‘𝑞)) ↔ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) → 𝑏 ∈ (𝑁‘𝑞)))) |
80 | | eleq1 2826 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑝 = 𝑞 → (𝑝 ∈ 𝑋 ↔ 𝑞 ∈ 𝑋)) |
81 | 80 | anbi2d 628 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 𝑞 → ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ↔ (𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋))) |
82 | 81 | 3anbi1d 1438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 𝑞 → (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ↔ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋))) |
83 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑝 = 𝑞 → (𝑁‘𝑝) = (𝑁‘𝑞)) |
84 | 83 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 = 𝑞 → (𝑎 ∈ (𝑁‘𝑝) ↔ 𝑎 ∈ (𝑁‘𝑞))) |
85 | 82, 84 | anbi12d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑞 → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ↔ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑞)))) |
86 | 83 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 = 𝑞 → (𝑏 ∈ (𝑁‘𝑝) ↔ 𝑏 ∈ (𝑁‘𝑞))) |
87 | 85, 86 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑝 = 𝑞 → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) ↔ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑞)) → 𝑏 ∈ (𝑁‘𝑞)))) |
88 | 9 | ustuqtop1 23301 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
89 | 87, 88 | chvarvv 2003 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑞)) → 𝑏 ∈ (𝑁‘𝑞)) |
90 | 79, 89 | vtoclg 3495 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 “ {𝑞}) ∈ V → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) → 𝑏 ∈ (𝑁‘𝑞))) |
91 | 61, 90 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ 𝑈 → ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) → 𝑏 ∈ (𝑁‘𝑞))) |
92 | 91 | impcom 407 |
. . . . . . . . . . . 12
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ∧ 𝑢 ∈ 𝑈) → 𝑏 ∈ (𝑁‘𝑞)) |
93 | 74, 92 | vtoclg 3495 |
. . . . . . . . . . 11
⊢ ((𝑤 “ {𝑝}) ∈ V → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ∧ 𝑢 ∈ 𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞))) |
94 | 67, 93 | syl 17 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑈 → (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ∧ 𝑢 ∈ 𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞))) |
95 | 94 | impcom 407 |
. . . . . . . . 9
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑞 ∈ 𝑋) ∧ (𝑢 “ {𝑞}) ⊆ (𝑤 “ {𝑝}) ∧ (𝑤 “ {𝑝}) ⊆ 𝑋) ∧ (𝑢 “ {𝑞}) ∈ (𝑁‘𝑞)) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 ∈ 𝑈) → (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)) |
96 | 66, 55, 50, 95 | syl21anc 834 |
. . . . . . . 8
⊢
((((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) ∧ 𝑞 ∈ (𝑢 “ {𝑝})) → (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)) |
97 | 96 | ralrimiva 3107 |
. . . . . . 7
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) → ∀𝑞 ∈ (𝑢 “ {𝑝})(𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)) |
98 | | raleq 3333 |
. . . . . . . 8
⊢ (𝑏 = (𝑢 “ {𝑝}) → (∀𝑞 ∈ 𝑏 (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞) ↔ ∀𝑞 ∈ (𝑢 “ {𝑝})(𝑤 “ {𝑝}) ∈ (𝑁‘𝑞))) |
99 | 98 | rspcev 3552 |
. . . . . . 7
⊢ (((𝑢 “ {𝑝}) ∈ (𝑁‘𝑝) ∧ ∀𝑞 ∈ (𝑢 “ {𝑝})(𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)) |
100 | 13, 97, 99 | syl2anc 583 |
. . . . . 6
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑢 ∈ 𝑈) ∧ (𝑢 ∘ 𝑢) ⊆ 𝑤) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)) |
101 | | ustexhalf 23270 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → ∃𝑢 ∈ 𝑈 (𝑢 ∘ 𝑢) ⊆ 𝑤) |
102 | 101 | adantlr 711 |
. . . . . 6
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) → ∃𝑢 ∈ 𝑈 (𝑢 ∘ 𝑢) ⊆ 𝑤) |
103 | 100, 102 | r19.29a 3217 |
. . . . 5
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)) |
104 | 103 | adantr 480 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞)) |
105 | | eleq1 2826 |
. . . . . 6
⊢ (𝑎 = (𝑤 “ {𝑝}) → (𝑎 ∈ (𝑁‘𝑞) ↔ (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞))) |
106 | 105 | rexralbidv 3229 |
. . . . 5
⊢ (𝑎 = (𝑤 “ {𝑝}) → (∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞) ↔ ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞))) |
107 | 106 | adantl 481 |
. . . 4
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞) ↔ ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 (𝑤 “ {𝑝}) ∈ (𝑁‘𝑞))) |
108 | 104, 107 | mpbird 256 |
. . 3
⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) |
109 | 108 | adantllr 715 |
. 2
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) |
110 | | vex 3426 |
. . . 4
⊢ 𝑎 ∈ V |
111 | 9 | ustuqtoplem 23299 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
112 | 110, 111 | mpan2 687 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
113 | 112 | biimpa 476 |
. 2
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
114 | 109, 113 | r19.29a 3217 |
1
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑞 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑞)) |