Step | Hyp | Ref
| Expression |
1 | | f1omptsn.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ {𝑥}) |
2 | | eqid 2738 |
. . . . . . 7
⊢ {𝑥} = {𝑥} |
3 | | snex 5349 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
4 | | eqsbc1 3760 |
. . . . . . . 8
⊢ ({𝑥} ∈ V →
([{𝑥} / 𝑢]𝑢 = {𝑥} ↔ {𝑥} = {𝑥})) |
5 | 3, 4 | ax-mp 5 |
. . . . . . 7
⊢
([{𝑥} / 𝑢]𝑢 = {𝑥} ↔ {𝑥} = {𝑥}) |
6 | 2, 5 | mpbir 230 |
. . . . . 6
⊢
[{𝑥} / 𝑢]𝑢 = {𝑥} |
7 | | sbcel2 4346 |
. . . . . . . 8
⊢
([{𝑥} / 𝑢]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ⦋{𝑥} / 𝑢⦌𝐴) |
8 | | csbconstg 3847 |
. . . . . . . . . 10
⊢ ({𝑥} ∈ V →
⦋{𝑥} / 𝑢⦌𝐴 = 𝐴) |
9 | 3, 8 | ax-mp 5 |
. . . . . . . . 9
⊢
⦋{𝑥} /
𝑢⦌𝐴 = 𝐴 |
10 | 9 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑥 ∈ ⦋{𝑥} / 𝑢⦌𝐴 ↔ 𝑥 ∈ 𝐴) |
11 | 7, 10 | bitri 274 |
. . . . . . 7
⊢
([{𝑥} / 𝑢]𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
12 | | f1omptsn.r |
. . . . . . . . . . . . . 14
⊢ 𝑅 = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
13 | 12 | abeq2i 2874 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ 𝑅 ↔ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}) |
14 | | df-rex 3069 |
. . . . . . . . . . . . 13
⊢
(∃𝑥 ∈
𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})) |
15 | 13, 14 | sylbbr 235 |
. . . . . . . . . . . 12
⊢
(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝑅) |
16 | 15 | 19.23bi 2186 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝑅) |
17 | 16 | sbcth 3726 |
. . . . . . . . . 10
⊢ ({𝑥} ∈ V → [{𝑥} / 𝑢]((𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝑅)) |
18 | 3, 17 | ax-mp 5 |
. . . . . . . . 9
⊢
[{𝑥} / 𝑢]((𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝑅) |
19 | | sbcimg 3762 |
. . . . . . . . . 10
⊢ ({𝑥} ∈ V →
([{𝑥} / 𝑢]((𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝑅) ↔ ([{𝑥} / 𝑢](𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢 ∈ 𝑅))) |
20 | 3, 19 | ax-mp 5 |
. . . . . . . . 9
⊢
([{𝑥} / 𝑢]((𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → 𝑢 ∈ 𝑅) ↔ ([{𝑥} / 𝑢](𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢 ∈ 𝑅)) |
21 | 18, 20 | mpbi 229 |
. . . . . . . 8
⊢
([{𝑥} / 𝑢](𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢 ∈ 𝑅) |
22 | | sbcan 3763 |
. . . . . . . 8
⊢
([{𝑥} / 𝑢](𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥}) ↔ ([{𝑥} / 𝑢]𝑥 ∈ 𝐴 ∧ [{𝑥} / 𝑢]𝑢 = {𝑥})) |
23 | | sbcel1v 3783 |
. . . . . . . 8
⊢
([{𝑥} / 𝑢]𝑢 ∈ 𝑅 ↔ {𝑥} ∈ 𝑅) |
24 | 21, 22, 23 | 3imtr3i 290 |
. . . . . . 7
⊢
(([{𝑥} /
𝑢]𝑥 ∈ 𝐴 ∧ [{𝑥} / 𝑢]𝑢 = {𝑥}) → {𝑥} ∈ 𝑅) |
25 | 11, 24 | sylanbr 581 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ [{𝑥} / 𝑢]𝑢 = {𝑥}) → {𝑥} ∈ 𝑅) |
26 | 6, 25 | mpan2 687 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 → {𝑥} ∈ 𝑅) |
27 | 1, 26 | fmpti 6968 |
. . . 4
⊢ 𝐹:𝐴⟶𝑅 |
28 | 1 | fvmpt2 6868 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ {𝑥} ∈ 𝑅) → (𝐹‘𝑥) = {𝑥}) |
29 | 26, 28 | mpdan 683 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐴 → (𝐹‘𝑥) = {𝑥}) |
30 | | sneq 4568 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
31 | 30, 1, 3 | fvmpt3i 6862 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 → (𝐹‘𝑦) = {𝑦}) |
32 | 29, 31 | eqeqan12d 2752 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ {𝑥} = {𝑦})) |
33 | | vex 3426 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
34 | | sneqbg 4771 |
. . . . . . . 8
⊢ (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)) |
35 | 33, 34 | ax-mp 5 |
. . . . . . 7
⊢ ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦) |
36 | 32, 35 | bitrdi 286 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
37 | 36 | biimpd 228 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦)) |
38 | 37 | rgen2 3126 |
. . . 4
⊢
∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦) |
39 | | dff13 7109 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝑅 ↔ (𝐹:𝐴⟶𝑅 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝐹‘𝑥) = (𝐹‘𝑦) → 𝑥 = 𝑦))) |
40 | 27, 38, 39 | mpbir2an 707 |
. . 3
⊢ 𝐹:𝐴–1-1→𝑅 |
41 | | f1f1orn 6711 |
. . 3
⊢ (𝐹:𝐴–1-1→𝑅 → 𝐹:𝐴–1-1-onto→ran
𝐹) |
42 | 40, 41 | ax-mp 5 |
. 2
⊢ 𝐹:𝐴–1-1-onto→ran
𝐹 |
43 | | rnmptsn 35433 |
. . . 4
⊢ ran
(𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
44 | 1 | rneqi 5835 |
. . . 4
⊢ ran 𝐹 = ran (𝑥 ∈ 𝐴 ↦ {𝑥}) |
45 | 43, 44, 12 | 3eqtr4i 2776 |
. . 3
⊢ ran 𝐹 = 𝑅 |
46 | | f1oeq3 6690 |
. . 3
⊢ (ran
𝐹 = 𝑅 → (𝐹:𝐴–1-1-onto→ran
𝐹 ↔ 𝐹:𝐴–1-1-onto→𝑅)) |
47 | 45, 46 | ax-mp 5 |
. 2
⊢ (𝐹:𝐴–1-1-onto→ran
𝐹 ↔ 𝐹:𝐴–1-1-onto→𝑅) |
48 | 42, 47 | mpbi 229 |
1
⊢ 𝐹:𝐴–1-1-onto→𝑅 |