Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  f1omptsnlem Structured version   Visualization version   GIF version

Theorem f1omptsnlem 34753
Description: This is the core of the proof of f1omptsn 34754, but to avoid the distinct variables on the definitions, we split this proof into two. (Contributed by ML, 15-Jul-2020.)
Hypotheses
Ref Expression
f1omptsn.f 𝐹 = (𝑥𝐴 ↦ {𝑥})
f1omptsn.r 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Assertion
Ref Expression
f1omptsnlem 𝐹:𝐴1-1-onto𝑅
Distinct variable groups:   𝑥,𝐴,𝑢   𝑥,𝐹   𝑢,𝑅,𝑥
Allowed substitution hint:   𝐹(𝑢)

Proof of Theorem f1omptsnlem
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 f1omptsn.f . . . . 5 𝐹 = (𝑥𝐴 ↦ {𝑥})
2 eqid 2798 . . . . . . 7 {𝑥} = {𝑥}
3 snex 5297 . . . . . . . 8 {𝑥} ∈ V
4 eqsbc3 3765 . . . . . . . 8 ({𝑥} ∈ V → ([{𝑥} / 𝑢]𝑢 = {𝑥} ↔ {𝑥} = {𝑥}))
53, 4ax-mp 5 . . . . . . 7 ([{𝑥} / 𝑢]𝑢 = {𝑥} ↔ {𝑥} = {𝑥})
62, 5mpbir 234 . . . . . 6 [{𝑥} / 𝑢]𝑢 = {𝑥}
7 sbcel2 4323 . . . . . . . 8 ([{𝑥} / 𝑢]𝑥𝐴𝑥{𝑥} / 𝑢𝐴)
8 csbconstg 3847 . . . . . . . . . 10 ({𝑥} ∈ V → {𝑥} / 𝑢𝐴 = 𝐴)
93, 8ax-mp 5 . . . . . . . . 9 {𝑥} / 𝑢𝐴 = 𝐴
109eleq2i 2881 . . . . . . . 8 (𝑥{𝑥} / 𝑢𝐴𝑥𝐴)
117, 10bitri 278 . . . . . . 7 ([{𝑥} / 𝑢]𝑥𝐴𝑥𝐴)
12 f1omptsn.r . . . . . . . . . . . . . 14 𝑅 = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
1312abeq2i 2925 . . . . . . . . . . . . 13 (𝑢𝑅 ↔ ∃𝑥𝐴 𝑢 = {𝑥})
14 df-rex 3112 . . . . . . . . . . . . 13 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥𝐴𝑢 = {𝑥}))
1513, 14sylbbr 239 . . . . . . . . . . . 12 (∃𝑥(𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅)
161519.23bi 2188 . . . . . . . . . . 11 ((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅)
1716sbcth 3735 . . . . . . . . . 10 ({𝑥} ∈ V → [{𝑥} / 𝑢]((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅))
183, 17ax-mp 5 . . . . . . . . 9 [{𝑥} / 𝑢]((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅)
19 sbcimg 3767 . . . . . . . . . 10 ({𝑥} ∈ V → ([{𝑥} / 𝑢]((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅) ↔ ([{𝑥} / 𝑢](𝑥𝐴𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢𝑅)))
203, 19ax-mp 5 . . . . . . . . 9 ([{𝑥} / 𝑢]((𝑥𝐴𝑢 = {𝑥}) → 𝑢𝑅) ↔ ([{𝑥} / 𝑢](𝑥𝐴𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢𝑅))
2118, 20mpbi 233 . . . . . . . 8 ([{𝑥} / 𝑢](𝑥𝐴𝑢 = {𝑥}) → [{𝑥} / 𝑢]𝑢𝑅)
22 sbcan 3768 . . . . . . . 8 ([{𝑥} / 𝑢](𝑥𝐴𝑢 = {𝑥}) ↔ ([{𝑥} / 𝑢]𝑥𝐴[{𝑥} / 𝑢]𝑢 = {𝑥}))
23 sbcel1v 3786 . . . . . . . 8 ([{𝑥} / 𝑢]𝑢𝑅 ↔ {𝑥} ∈ 𝑅)
2421, 22, 233imtr3i 294 . . . . . . 7 (([{𝑥} / 𝑢]𝑥𝐴[{𝑥} / 𝑢]𝑢 = {𝑥}) → {𝑥} ∈ 𝑅)
2511, 24sylanbr 585 . . . . . 6 ((𝑥𝐴[{𝑥} / 𝑢]𝑢 = {𝑥}) → {𝑥} ∈ 𝑅)
266, 25mpan2 690 . . . . 5 (𝑥𝐴 → {𝑥} ∈ 𝑅)
271, 26fmpti 6853 . . . 4 𝐹:𝐴𝑅
281fvmpt2 6756 . . . . . . . . 9 ((𝑥𝐴 ∧ {𝑥} ∈ 𝑅) → (𝐹𝑥) = {𝑥})
2926, 28mpdan 686 . . . . . . . 8 (𝑥𝐴 → (𝐹𝑥) = {𝑥})
30 sneq 4535 . . . . . . . . 9 (𝑥 = 𝑦 → {𝑥} = {𝑦})
3130, 1, 3fvmpt3i 6750 . . . . . . . 8 (𝑦𝐴 → (𝐹𝑦) = {𝑦})
3229, 31eqeqan12d 2815 . . . . . . 7 ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ {𝑥} = {𝑦}))
33 vex 3444 . . . . . . . 8 𝑥 ∈ V
34 sneqbg 4734 . . . . . . . 8 (𝑥 ∈ V → ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦))
3533, 34ax-mp 5 . . . . . . 7 ({𝑥} = {𝑦} ↔ 𝑥 = 𝑦)
3632, 35syl6bb 290 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
3736biimpd 232 . . . . 5 ((𝑥𝐴𝑦𝐴) → ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦))
3837rgen2 3168 . . . 4 𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)
39 dff13 6991 . . . 4 (𝐹:𝐴1-1𝑅 ↔ (𝐹:𝐴𝑅 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
4027, 38, 39mpbir2an 710 . . 3 𝐹:𝐴1-1𝑅
41 f1f1orn 6601 . . 3 (𝐹:𝐴1-1𝑅𝐹:𝐴1-1-onto→ran 𝐹)
4240, 41ax-mp 5 . 2 𝐹:𝐴1-1-onto→ran 𝐹
43 rnmptsn 34752 . . . 4 ran (𝑥𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
441rneqi 5771 . . . 4 ran 𝐹 = ran (𝑥𝐴 ↦ {𝑥})
4543, 44, 123eqtr4i 2831 . . 3 ran 𝐹 = 𝑅
46 f1oeq3 6581 . . 3 (ran 𝐹 = 𝑅 → (𝐹:𝐴1-1-onto→ran 𝐹𝐹:𝐴1-1-onto𝑅))
4745, 46ax-mp 5 . 2 (𝐹:𝐴1-1-onto→ran 𝐹𝐹:𝐴1-1-onto𝑅)
4842, 47mpbi 233 1 𝐹:𝐴1-1-onto𝑅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  {cab 2776  wral 3106  wrex 3107  Vcvv 3441  [wsbc 3720  csb 3828  {csn 4525  cmpt 5110  ran crn 5520  wf 6320  1-1wf1 6321  1-1-ontowf1o 6323  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332
This theorem is referenced by:  f1omptsn  34754
  Copyright terms: Public domain W3C validator