MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash1to3 Structured version   Visualization version   GIF version

Theorem hash1to3 14452
Description: If the size of a set is between 1 and 3 (inclusively), the set is a singleton or an unordered pair or an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
hash1to3 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
Distinct variable group:   𝑉,𝑎,𝑏,𝑐

Proof of Theorem hash1to3
StepHypRef Expression
1 hashcl 14316 . . 3 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
2 nn01to3 12925 . . 3 (((♯‘𝑉) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3))
31, 2syl3an1 1164 . 2 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3))
4 hash1snb 14379 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
54biimpa 478 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎})
6 3mix1 1331 . . . . . . . . . . 11 (𝑉 = {𝑎} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
762eximi 1839 . . . . . . . . . 10 (∃𝑏𝑐 𝑉 = {𝑎} → ∃𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
8719.23bi 2185 . . . . . . . . 9 (∃𝑐 𝑉 = {𝑎} → ∃𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
9819.23bi 2185 . . . . . . . 8 (𝑉 = {𝑎} → ∃𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
109eximi 1838 . . . . . . 7 (∃𝑎 𝑉 = {𝑎} → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
115, 10syl 17 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
1211expcom 415 . . . . 5 ((♯‘𝑉) = 1 → (𝑉 ∈ Fin → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
13 hash2pr 14430 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
14 3mix2 1332 . . . . . . . . . 10 (𝑉 = {𝑎, 𝑏} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
1514eximi 1838 . . . . . . . . 9 (∃𝑐 𝑉 = {𝑎, 𝑏} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
161519.23bi 2185 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
17162eximi 1839 . . . . . . 7 (∃𝑎𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
1813, 17syl 17 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
1918expcom 415 . . . . 5 ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
20 hash3tr 14451 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐})
21 3mix3 1333 . . . . . . . . 9 (𝑉 = {𝑎, 𝑏, 𝑐} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
2221eximi 1838 . . . . . . . 8 (∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
23222eximi 1839 . . . . . . 7 (∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐} → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
2420, 23syl 17 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
2524expcom 415 . . . . 5 ((♯‘𝑉) = 3 → (𝑉 ∈ Fin → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
2612, 19, 253jaoi 1428 . . . 4 (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → (𝑉 ∈ Fin → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
2726com12 32 . . 3 (𝑉 ∈ Fin → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
28273ad2ant1 1134 . 2 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
293, 28mpd 15 1 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3o 1087  w3a 1088   = wceq 1542  wex 1782  wcel 2107  {csn 4629  {cpr 4631  {ctp 4633   class class class wbr 5149  cfv 6544  Fincfn 8939  1c1 11111  cle 11249  2c2 12267  3c3 12268  0cn0 12472  chash 14290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-3o 8468  df-oadd 8470  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-hash 14291
This theorem is referenced by:  friendship  29652
  Copyright terms: Public domain W3C validator