MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash1to3 Structured version   Visualization version   GIF version

Theorem hash1to3 14528
Description: If the size of a set is between 1 and 3 (inclusively), the set is a singleton or an unordered pair or an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018.)
Assertion
Ref Expression
hash1to3 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
Distinct variable group:   𝑉,𝑎,𝑏,𝑐

Proof of Theorem hash1to3
StepHypRef Expression
1 hashcl 14392 . . 3 (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0)
2 nn01to3 12981 . . 3 (((♯‘𝑉) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3))
31, 2syl3an1 1162 . 2 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3))
4 hash1snb 14455 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎}))
54biimpa 476 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎})
6 3mix1 1329 . . . . . . . . . . 11 (𝑉 = {𝑎} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
762eximi 1833 . . . . . . . . . 10 (∃𝑏𝑐 𝑉 = {𝑎} → ∃𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
8719.23bi 2189 . . . . . . . . 9 (∃𝑐 𝑉 = {𝑎} → ∃𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
9819.23bi 2189 . . . . . . . 8 (𝑉 = {𝑎} → ∃𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
109eximi 1832 . . . . . . 7 (∃𝑎 𝑉 = {𝑎} → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
115, 10syl 17 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
1211expcom 413 . . . . 5 ((♯‘𝑉) = 1 → (𝑉 ∈ Fin → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
13 hash2pr 14505 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
14 3mix2 1330 . . . . . . . . . 10 (𝑉 = {𝑎, 𝑏} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
1514eximi 1832 . . . . . . . . 9 (∃𝑐 𝑉 = {𝑎, 𝑏} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
161519.23bi 2189 . . . . . . . 8 (𝑉 = {𝑎, 𝑏} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
17162eximi 1833 . . . . . . 7 (∃𝑎𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
1813, 17syl 17 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
1918expcom 413 . . . . 5 ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
20 hash3tr 14527 . . . . . . 7 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐})
21 3mix3 1331 . . . . . . . . 9 (𝑉 = {𝑎, 𝑏, 𝑐} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
2221eximi 1832 . . . . . . . 8 (∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
23222eximi 1833 . . . . . . 7 (∃𝑎𝑏𝑐 𝑉 = {𝑎, 𝑏, 𝑐} → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
2420, 23syl 17 . . . . . 6 ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
2524expcom 413 . . . . 5 ((♯‘𝑉) = 3 → (𝑉 ∈ Fin → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
2612, 19, 253jaoi 1427 . . . 4 (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → (𝑉 ∈ Fin → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
2726com12 32 . . 3 (𝑉 ∈ Fin → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
28273ad2ant1 1132 . 2 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})))
293, 28mpd 15 1 ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎𝑏𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {csn 4631  {cpr 4633  {ctp 4635   class class class wbr 5148  cfv 6563  Fincfn 8984  1c1 11154  cle 11294  2c2 12319  3c3 12320  0cn0 12524  chash 14366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-3o 8507  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367
This theorem is referenced by:  friendship  30428
  Copyright terms: Public domain W3C validator