![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hash1to3 | Structured version Visualization version GIF version |
Description: If the size of a set is between 1 and 3 (inclusively), the set is a singleton or an unordered pair or an unordered triple. (Contributed by Alexander van der Vekens, 13-Sep-2018.) |
Ref | Expression |
---|---|
hash1to3 | ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl 14320 | . . 3 ⊢ (𝑉 ∈ Fin → (♯‘𝑉) ∈ ℕ0) | |
2 | nn01to3 12929 | . . 3 ⊢ (((♯‘𝑉) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3)) | |
3 | 1, 2 | syl3an1 1161 | . 2 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3)) |
4 | hash1snb 14383 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 1 ↔ ∃𝑎 𝑉 = {𝑎})) | |
5 | 4 | biimpa 475 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎 𝑉 = {𝑎}) |
6 | 3mix1 1328 | . . . . . . . . . . 11 ⊢ (𝑉 = {𝑎} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
7 | 6 | 2eximi 1836 | . . . . . . . . . 10 ⊢ (∃𝑏∃𝑐 𝑉 = {𝑎} → ∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
8 | 7 | 19.23bi 2182 | . . . . . . . . 9 ⊢ (∃𝑐 𝑉 = {𝑎} → ∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
9 | 8 | 19.23bi 2182 | . . . . . . . 8 ⊢ (𝑉 = {𝑎} → ∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
10 | 9 | eximi 1835 | . . . . . . 7 ⊢ (∃𝑎 𝑉 = {𝑎} → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
11 | 5, 10 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 1) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
12 | 11 | expcom 412 | . . . . 5 ⊢ ((♯‘𝑉) = 1 → (𝑉 ∈ Fin → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
13 | hash2pr 14434 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏}) | |
14 | 3mix2 1329 | . . . . . . . . . 10 ⊢ (𝑉 = {𝑎, 𝑏} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
15 | 14 | eximi 1835 | . . . . . . . . 9 ⊢ (∃𝑐 𝑉 = {𝑎, 𝑏} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
16 | 15 | 19.23bi 2182 | . . . . . . . 8 ⊢ (𝑉 = {𝑎, 𝑏} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
17 | 16 | 2eximi 1836 | . . . . . . 7 ⊢ (∃𝑎∃𝑏 𝑉 = {𝑎, 𝑏} → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
18 | 13, 17 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 2) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
19 | 18 | expcom 412 | . . . . 5 ⊢ ((♯‘𝑉) = 2 → (𝑉 ∈ Fin → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
20 | hash3tr 14455 | . . . . . . 7 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐}) | |
21 | 3mix3 1330 | . . . . . . . . 9 ⊢ (𝑉 = {𝑎, 𝑏, 𝑐} → (𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) | |
22 | 21 | eximi 1835 | . . . . . . . 8 ⊢ (∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐} → ∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
23 | 22 | 2eximi 1836 | . . . . . . 7 ⊢ (∃𝑎∃𝑏∃𝑐 𝑉 = {𝑎, 𝑏, 𝑐} → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
24 | 20, 23 | syl 17 | . . . . . 6 ⊢ ((𝑉 ∈ Fin ∧ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
25 | 24 | expcom 412 | . . . . 5 ⊢ ((♯‘𝑉) = 3 → (𝑉 ∈ Fin → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
26 | 12, 19, 25 | 3jaoi 1425 | . . . 4 ⊢ (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → (𝑉 ∈ Fin → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
27 | 26 | com12 32 | . . 3 ⊢ (𝑉 ∈ Fin → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
28 | 27 | 3ad2ant1 1131 | . 2 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → (((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 2 ∨ (♯‘𝑉) = 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐}))) |
29 | 3, 28 | mpd 15 | 1 ⊢ ((𝑉 ∈ Fin ∧ 1 ≤ (♯‘𝑉) ∧ (♯‘𝑉) ≤ 3) → ∃𝑎∃𝑏∃𝑐(𝑉 = {𝑎} ∨ 𝑉 = {𝑎, 𝑏} ∨ 𝑉 = {𝑎, 𝑏, 𝑐})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ w3o 1084 ∧ w3a 1085 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {csn 4627 {cpr 4629 {ctp 4631 class class class wbr 5147 ‘cfv 6542 Fincfn 8941 1c1 11113 ≤ cle 11253 2c2 12271 3c3 12272 ℕ0cn0 12476 ♯chash 14294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-3o 8470 df-oadd 8472 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13489 df-hash 14295 |
This theorem is referenced by: friendship 29919 |
Copyright terms: Public domain | W3C validator |