Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelopabt | Structured version Visualization version GIF version |
Description: Closed theorem form of opelopab 5455. (Contributed by NM, 19-Feb-2013.) |
Ref | Expression |
---|---|
opelopabt | ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5440 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
2 | 19.26-2 1874 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) ↔ (∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)))) | |
3 | anim12 806 | . . . . . 6 ⊢ (((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)))) | |
4 | bitr 802 | . . . . . 6 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) | |
5 | 3, 4 | syl6 35 | . . . . 5 ⊢ (((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
6 | 5 | 2alimi 1815 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
7 | 2, 6 | sylbir 234 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
8 | copsex2t 5406 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜒)) | |
9 | 7, 8 | stoic3 1779 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜒)) |
10 | 1, 9 | bitrid 282 | 1 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 〈cop 4567 {copab 5136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |