![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelopabt | Structured version Visualization version GIF version |
Description: Closed theorem form of opelopab 5535. (Contributed by NM, 19-Feb-2013.) |
Ref | Expression |
---|---|
opelopabt | ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elopab 5520 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)) | |
2 | 19.26-2 1866 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) ↔ (∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)))) | |
3 | anim12 806 | . . . . . 6 ⊢ (((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)))) | |
4 | bitr 802 | . . . . . 6 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) | |
5 | 3, 4 | syl6 35 | . . . . 5 ⊢ (((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
6 | 5 | 2alimi 1806 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
7 | 2, 6 | sylbir 234 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
8 | copsex2t 5485 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒)) | |
9 | 7, 8 | stoic3 1770 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒)) |
10 | 1, 9 | bitrid 283 | 1 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ⟨cop 4629 {copab 5203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-opab 5204 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |