MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabt Structured version   Visualization version   GIF version

Theorem opelopabt 5448
Description: Closed theorem form of opelopab 5458. (Contributed by NM, 19-Feb-2013.)
Assertion
Ref Expression
opelopabt ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabt
StepHypRef Expression
1 elopab 5443 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 19.26-2 1878 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) ↔ (∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))))
3 anim12 806 . . . . . 6 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝜑𝜓) ∧ (𝜓𝜒))))
4 bitr 802 . . . . . 6 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
53, 4syl6 35 . . . . 5 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
652alimi 1819 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
72, 6sylbir 234 . . 3 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))) → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
8 copsex2t 5410 . . 3 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
97, 8stoic3 1783 . 2 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
101, 9bitrid 282 1 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wal 1540   = wceq 1542  wex 1786  wcel 2110  cop 4573  {copab 5141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-opab 5142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator