| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelopabt | Structured version Visualization version GIF version | ||
| Description: Closed theorem form of opelopab 5547. (Contributed by NM, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| opelopabt | ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 5532 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 2 | 19.26-2 1871 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) ↔ (∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)))) | |
| 3 | anim12 809 | . . . . . 6 ⊢ (((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)))) | |
| 4 | bitr 805 | . . . . . 6 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜓 ↔ 𝜒)) → (𝜑 ↔ 𝜒)) | |
| 5 | 3, 4 | syl6 35 | . . . . 5 ⊢ (((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
| 6 | 5 | 2alimi 1812 | . . . 4 ⊢ (∀𝑥∀𝑦((𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
| 7 | 2, 6 | sylbir 235 | . . 3 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒))) → ∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒))) |
| 8 | copsex2t 5497 | . . 3 ⊢ ((∀𝑥∀𝑦((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜒)) | |
| 9 | 7, 8 | stoic3 1776 | . 2 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (∃𝑥∃𝑦(〈𝐴, 𝐵〉 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ 𝜒)) |
| 10 | 1, 9 | bitrid 283 | 1 ⊢ ((∀𝑥∀𝑦(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 〈cop 4632 {copab 5205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |