Proof of Theorem 2mo2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | exdistrv 1955 | . 2
⊢
(∃𝑧∃𝑤(∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) ↔ (∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) | 
| 2 |  | jcab 517 | . . . . 5
⊢ ((𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤))) | 
| 3 | 2 | 2albii 1820 | . . . 4
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤))) | 
| 4 |  | 19.26-2 1871 | . . . 4
⊢
(∀𝑥∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) | 
| 5 |  | 19.23v 1942 | . . . . . 6
⊢
(∀𝑦(𝜑 → 𝑥 = 𝑧) ↔ (∃𝑦𝜑 → 𝑥 = 𝑧)) | 
| 6 | 5 | albii 1819 | . . . . 5
⊢
(∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧)) | 
| 7 |  | alcom 2159 | . . . . . 6
⊢
(∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤) ↔ ∀𝑦∀𝑥(𝜑 → 𝑦 = 𝑤)) | 
| 8 |  | 19.23v 1942 | . . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑦 = 𝑤) ↔ (∃𝑥𝜑 → 𝑦 = 𝑤)) | 
| 9 | 8 | albii 1819 | . . . . . 6
⊢
(∀𝑦∀𝑥(𝜑 → 𝑦 = 𝑤) ↔ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) | 
| 10 | 7, 9 | bitri 275 | . . . . 5
⊢
(∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤) ↔ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) | 
| 11 | 6, 10 | anbi12i 628 | . . . 4
⊢
((∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) | 
| 12 | 3, 4, 11 | 3bitri 297 | . . 3
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) | 
| 13 | 12 | 2exbii 1849 | . 2
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∃𝑧∃𝑤(∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) | 
| 14 |  | df-mo 2540 | . . 3
⊢
(∃*𝑥∃𝑦𝜑 ↔ ∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧)) | 
| 15 |  | df-mo 2540 | . . 3
⊢
(∃*𝑦∃𝑥𝜑 ↔ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) | 
| 16 | 14, 15 | anbi12i 628 | . 2
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ (∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) | 
| 17 | 1, 13, 16 | 3bitr4ri 304 | 1
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |