Proof of Theorem 2mo2
Step | Hyp | Ref
| Expression |
1 | | exdistrv 1959 |
. 2
⊢
(∃𝑧∃𝑤(∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) ↔ (∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
2 | | jcab 518 |
. . . . 5
⊢ ((𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤))) |
3 | 2 | 2albii 1823 |
. . . 4
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∀𝑥∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤))) |
4 | | 19.26-2 1874 |
. . . 4
⊢
(∀𝑥∀𝑦((𝜑 → 𝑥 = 𝑧) ∧ (𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤))) |
5 | | 19.23v 1945 |
. . . . . 6
⊢
(∀𝑦(𝜑 → 𝑥 = 𝑧) ↔ (∃𝑦𝜑 → 𝑥 = 𝑧)) |
6 | 5 | albii 1822 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧)) |
7 | | alcom 2156 |
. . . . . 6
⊢
(∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤) ↔ ∀𝑦∀𝑥(𝜑 → 𝑦 = 𝑤)) |
8 | | 19.23v 1945 |
. . . . . . 7
⊢
(∀𝑥(𝜑 → 𝑦 = 𝑤) ↔ (∃𝑥𝜑 → 𝑦 = 𝑤)) |
9 | 8 | albii 1822 |
. . . . . 6
⊢
(∀𝑦∀𝑥(𝜑 → 𝑦 = 𝑤) ↔ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) |
10 | 7, 9 | bitri 274 |
. . . . 5
⊢
(∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤) ↔ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) |
11 | 6, 10 | anbi12i 627 |
. . . 4
⊢
((∀𝑥∀𝑦(𝜑 → 𝑥 = 𝑧) ∧ ∀𝑥∀𝑦(𝜑 → 𝑦 = 𝑤)) ↔ (∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
12 | 3, 4, 11 | 3bitri 297 |
. . 3
⊢
(∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ (∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
13 | 12 | 2exbii 1851 |
. 2
⊢
(∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) ↔ ∃𝑧∃𝑤(∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
14 | | df-mo 2540 |
. . 3
⊢
(∃*𝑥∃𝑦𝜑 ↔ ∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧)) |
15 | | df-mo 2540 |
. . 3
⊢
(∃*𝑦∃𝑥𝜑 ↔ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤)) |
16 | 14, 15 | anbi12i 627 |
. 2
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ (∃𝑧∀𝑥(∃𝑦𝜑 → 𝑥 = 𝑧) ∧ ∃𝑤∀𝑦(∃𝑥𝜑 → 𝑦 = 𝑤))) |
17 | 1, 13, 16 | 3bitr4ri 304 |
1
⊢
((∃*𝑥∃𝑦𝜑 ∧ ∃*𝑦∃𝑥𝜑) ↔ ∃𝑧∃𝑤∀𝑥∀𝑦(𝜑 → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤))) |