Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > aaanOLD | Structured version Visualization version GIF version |
Description: Obsolete version of aaan 2328 as of 21-Nov-2024. (Contributed by NM, 12-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
aaan.1 | ⊢ Ⅎ𝑦𝜑 |
aaan.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
aaanOLD | ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aaan.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | 19.28 2221 | . . 3 ⊢ (∀𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦𝜓)) |
3 | 2 | albii 1822 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ ∀𝑥(𝜑 ∧ ∀𝑦𝜓)) |
4 | aaan.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | nfal 2317 | . . 3 ⊢ Ⅎ𝑥∀𝑦𝜓 |
6 | 5 | 19.27 2220 | . 2 ⊢ (∀𝑥(𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
7 | 3, 6 | bitri 274 | 1 ⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |