MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaanOLD Structured version   Visualization version   GIF version

Theorem aaanOLD 2322
Description: Obsolete version of aaan 2321 as of 21-Nov-2024. (Contributed by NM, 12-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
aaan.1 𝑦𝜑
aaan.2 𝑥𝜓
Assertion
Ref Expression
aaanOLD (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))

Proof of Theorem aaanOLD
StepHypRef Expression
1 aaan.1 . . . 4 𝑦𝜑
2119.28 2213 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝜓))
32albii 1813 . 2 (∀𝑥𝑦(𝜑𝜓) ↔ ∀𝑥(𝜑 ∧ ∀𝑦𝜓))
4 aaan.2 . . . 4 𝑥𝜓
54nfal 2310 . . 3 𝑥𝑦𝜓
6519.27 2212 . 2 (∀𝑥(𝜑 ∧ ∀𝑦𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
73, 6bitri 275 1 (∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wal 1531  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2163
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-nf 1778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator