Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.12b | Structured version Visualization version GIF version |
Description: Version of 19.12vv 2347 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
19.12b.1 | ⊢ Ⅎ𝑦𝜑 |
19.12b.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
19.12b | ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.12b.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | 19.21 2203 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) |
3 | 2 | exbii 1851 | . 2 ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∃𝑥(𝜑 → ∀𝑦𝜓)) |
4 | 19.12b.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | nfal 2321 | . . 3 ⊢ Ⅎ𝑥∀𝑦𝜓 |
6 | 5 | 19.36 2226 | . 2 ⊢ (∃𝑥(𝜑 → ∀𝑦𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓)) |
7 | 4 | 19.36 2226 | . . . 4 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) |
8 | 7 | albii 1823 | . . 3 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) ↔ ∀𝑦(∀𝑥𝜑 → 𝜓)) |
9 | 1 | nfal 2321 | . . . 4 ⊢ Ⅎ𝑦∀𝑥𝜑 |
10 | 9 | 19.21 2203 | . . 3 ⊢ (∀𝑦(∀𝑥𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓)) |
11 | 8, 10 | bitr2i 275 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑦𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
12 | 3, 6, 11 | 3bitri 296 | 1 ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |