Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  19.12b Structured version   Visualization version   GIF version

Theorem 19.12b 33777
Description: Version of 19.12vv 2345 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
Hypotheses
Ref Expression
19.12b.1 𝑦𝜑
19.12b.2 𝑥𝜓
Assertion
Ref Expression
19.12b (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem 19.12b
StepHypRef Expression
1 19.12b.1 . . . 4 𝑦𝜑
2119.21 2200 . . 3 (∀𝑦(𝜑𝜓) ↔ (𝜑 → ∀𝑦𝜓))
32exbii 1850 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 → ∀𝑦𝜓))
4 19.12b.2 . . . 4 𝑥𝜓
54nfal 2317 . . 3 𝑥𝑦𝜓
6519.36 2223 . 2 (∃𝑥(𝜑 → ∀𝑦𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓))
7419.36 2223 . . . 4 (∃𝑥(𝜑𝜓) ↔ (∀𝑥𝜑𝜓))
87albii 1822 . . 3 (∀𝑦𝑥(𝜑𝜓) ↔ ∀𝑦(∀𝑥𝜑𝜓))
91nfal 2317 . . . 4 𝑦𝑥𝜑
10919.21 2200 . . 3 (∀𝑦(∀𝑥𝜑𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓))
118, 10bitr2i 275 . 2 ((∀𝑥𝜑 → ∀𝑦𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
123, 6, 113bitri 297 1 (∃𝑥𝑦(𝜑𝜓) ↔ ∀𝑦𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator