|   | Mathbox for Scott Fenton | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 19.12b | Structured version Visualization version GIF version | ||
| Description: Version of 19.12vv 2349 with not-free hypotheses, instead of distinct variable conditions. (Contributed by Scott Fenton, 13-Dec-2010.) (Revised by Mario Carneiro, 11-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| 19.12b.1 | ⊢ Ⅎ𝑦𝜑 | 
| 19.12b.2 | ⊢ Ⅎ𝑥𝜓 | 
| Ref | Expression | 
|---|---|
| 19.12b | ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.12b.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | 19.21 2207 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑦𝜓)) | 
| 3 | 2 | exbii 1848 | . 2 ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∃𝑥(𝜑 → ∀𝑦𝜓)) | 
| 4 | 19.12b.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 4 | nfal 2323 | . . 3 ⊢ Ⅎ𝑥∀𝑦𝜓 | 
| 6 | 5 | 19.36 2230 | . 2 ⊢ (∃𝑥(𝜑 → ∀𝑦𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓)) | 
| 7 | 4 | 19.36 2230 | . . . 4 ⊢ (∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → 𝜓)) | 
| 8 | 7 | albii 1819 | . . 3 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) ↔ ∀𝑦(∀𝑥𝜑 → 𝜓)) | 
| 9 | 1 | nfal 2323 | . . . 4 ⊢ Ⅎ𝑦∀𝑥𝜑 | 
| 10 | 9 | 19.21 2207 | . . 3 ⊢ (∀𝑦(∀𝑥𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∀𝑦𝜓)) | 
| 11 | 8, 10 | bitr2i 276 | . 2 ⊢ ((∀𝑥𝜑 → ∀𝑦𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | 
| 12 | 3, 6, 11 | 3bitri 297 | 1 ⊢ (∃𝑥∀𝑦(𝜑 → 𝜓) ↔ ∀𝑦∃𝑥(𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |