| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcimgft | Structured version Visualization version GIF version | ||
| Description: Closed theorem form of spcimgf 3550. (Contributed by Wolf Lammen, 28-Jul-2025.) |
| Ref | Expression |
|---|---|
| spcimgft | ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elissetv 2822 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ∃𝑦 𝑦 = 𝐴) | |
| 2 | cbvexeqsetf 3495 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → (∃𝑥 𝑥 = 𝐴 ↔ ∃𝑦 𝑦 = 𝐴)) | |
| 3 | 1, 2 | imbitrrid 246 | . . 3 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴)) |
| 4 | pm2.04 90 | . . . . . 6 ⊢ ((𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝜑 → (𝑥 = 𝐴 → 𝜓))) | |
| 5 | 4 | al2imi 1815 | . . . . 5 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝐴 → 𝜓))) |
| 6 | 19.23t 2210 | . . . . . 6 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) ↔ (∃𝑥 𝑥 = 𝐴 → 𝜓))) | |
| 7 | 6 | biimpd 229 | . . . . 5 ⊢ (Ⅎ𝑥𝜓 → (∀𝑥(𝑥 = 𝐴 → 𝜓) → (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
| 8 | 5, 7 | sylan9r 508 | . . . 4 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → (∃𝑥 𝑥 = 𝐴 → 𝜓))) |
| 9 | 8 | com23 86 | . . 3 ⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) → (∃𝑥 𝑥 = 𝐴 → (∀𝑥𝜑 → 𝜓))) |
| 10 | 3, 9 | sylan9 507 | . 2 ⊢ ((Ⅎ𝑥𝐴 ∧ (Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)))) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) |
| 11 | 10 | anassrs 467 | 1 ⊢ (((Ⅎ𝑥𝐴 ∧ Ⅎ𝑥𝜓) ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓))) → (𝐴 ∈ 𝑉 → (∀𝑥𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-cleq 2729 df-clel 2816 df-nfc 2892 |
| This theorem is referenced by: spcimgfi1 3547 vtoclgft 3552 |
| Copyright terms: Public domain | W3C validator |