MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eeorOLD Structured version   Visualization version   GIF version

Theorem eeorOLD 2330
Description: Obsolete version of eeor 2329 as of 21-Nov-2024. (Contributed by NM, 8-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
eeor.1 𝑦𝜑
eeor.2 𝑥𝜓
Assertion
Ref Expression
eeorOLD (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓))

Proof of Theorem eeorOLD
StepHypRef Expression
1 eeor.1 . . . 4 𝑦𝜑
2119.45 2230 . . 3 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑦𝜓))
32exbii 1849 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∨ ∃𝑦𝜓))
4 eeor.2 . . . 4 𝑥𝜓
54nfex 2317 . . 3 𝑥𝑦𝜓
6519.44 2229 . 2 (∃𝑥(𝜑 ∨ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓))
73, 6bitri 274 1 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844  wex 1780  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-10 2136  ax-11 2153  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-or 845  df-ex 1781  df-nf 1785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator