| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3rspcedvdw | Structured version Visualization version GIF version | ||
| Description: Triple application of rspcedvdw 3624. (Contributed by SN, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| 3rspcedvdw.1 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) |
| 3rspcedvdw.2 | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) |
| 3rspcedvdw.3 | ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜏)) |
| 3rspcedvdw.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 3rspcedvdw.b | ⊢ (𝜑 → 𝐵 ∈ 𝑌) |
| 3rspcedvdw.c | ⊢ (𝜑 → 𝐶 ∈ 𝑍) |
| 3rspcedvdw.4 | ⊢ (𝜑 → 𝜏) |
| Ref | Expression |
|---|---|
| 3rspcedvdw | ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 ∃𝑧 ∈ 𝑍 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3rspcedvdw.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | 3rspcedvdw.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑌) | |
| 3 | 3rspcedvdw.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑍) | |
| 4 | 3rspcedvdw.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | 3rspcedvdw.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) | |
| 6 | 3rspcedvdw.2 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) | |
| 7 | 3rspcedvdw.3 | . . 3 ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜏)) | |
| 8 | 5, 6, 7 | rspc3ev 3638 | . 2 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ 𝜏) → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 ∃𝑧 ∈ 𝑍 𝜓) |
| 9 | 1, 2, 3, 4, 8 | syl31anc 1375 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 ∃𝑧 ∈ 𝑍 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∃wrex 3069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 |
| This theorem is referenced by: dffltz 42622 nna4b4nsq 42648 cycl3grtri 47887 grlimgrtri 47936 |
| Copyright terms: Public domain | W3C validator |