MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfex Structured version   Visualization version   GIF version

Theorem nfex 2323
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.)
Hypothesis
Ref Expression
nfex.1 𝑥𝜑
Assertion
Ref Expression
nfex 𝑥𝑦𝜑

Proof of Theorem nfex
StepHypRef Expression
1 df-ex 1780 . 2 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
2 nfex.1 . . . . 5 𝑥𝜑
32nfn 1857 . . . 4 𝑥 ¬ 𝜑
43nfal 2322 . . 3 𝑥𝑦 ¬ 𝜑
54nfn 1857 . 2 𝑥 ¬ ∀𝑦 ¬ 𝜑
61, 5nfxfr 1853 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  hbex  2324  nfnf  2325  19.12  2326  eean  2346  eeeanv  2348  ee4anv  2349  nfmo1  2551  nfeu1  2582  moexexlem  2620  r19.12  3290  ceqsex2  3504  nfopab2  5181  cbvopab1  5184  cbvopab1g  5185  cbvopab1s  5187  axrep2  5240  axrep3  5241  axrep4OLD  5244  copsex2t  5455  mosubopt  5473  euotd  5476  nfco  5832  dfdmf  5863  dfrnf  5917  nfdm  5918  fv3  6879  oprabv  7452  nfoprab2  7454  nfoprab3  7455  nfoprab  7456  cbvoprab1  7479  cbvoprab2  7480  cbvoprab3  7483  nffrecs  8265  ac6sfi  9238  aceq1  10077  zfcndrep  10574  zfcndinf  10578  nfsum1  15663  nfsum  15664  fsum2dlem  15743  nfcprod1  15881  nfcprod  15882  fprod2dlem  15953  brabgaf  32543  2ndresdju  32580  bnj981  34947  bnj1388  35030  bnj1445  35041  bnj1489  35053  fineqvrep  35092  bj-opabco  37183  pm11.71  44393  permaxrep  45003  upbdrech  45310  stoweidlem57  46062  or2expropbi  47039  ich2exprop  47476  ichnreuop  47477  ichreuopeq  47478  reuopreuprim  47531  pgind  49710
  Copyright terms: Public domain W3C validator