MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfex Structured version   Visualization version   GIF version

Theorem nfex 2323
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.)
Hypothesis
Ref Expression
nfex.1 𝑥𝜑
Assertion
Ref Expression
nfex 𝑥𝑦𝜑

Proof of Theorem nfex
StepHypRef Expression
1 df-ex 1780 . 2 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
2 nfex.1 . . . . 5 𝑥𝜑
32nfn 1857 . . . 4 𝑥 ¬ 𝜑
43nfal 2322 . . 3 𝑥𝑦 ¬ 𝜑
54nfn 1857 . 2 𝑥 ¬ ∀𝑦 ¬ 𝜑
61, 5nfxfr 1853 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  hbex  2324  nfnf  2325  19.12  2326  eean  2346  eeeanv  2348  ee4anv  2349  nfmo1  2550  nfeu1  2581  moexexlem  2619  r19.12  3285  ceqsex2  3498  nfopab2  5173  cbvopab1  5176  cbvopab1g  5177  cbvopab1s  5179  axrep2  5232  axrep3  5233  axrep4OLD  5236  copsex2t  5447  mosubopt  5465  euotd  5468  nfco  5819  dfdmf  5850  dfrnf  5903  nfdm  5904  fv3  6858  oprabv  7429  nfoprab2  7431  nfoprab3  7432  nfoprab  7433  cbvoprab1  7456  cbvoprab2  7457  cbvoprab3  7460  nffrecs  8239  ac6sfi  9207  aceq1  10046  zfcndrep  10543  zfcndinf  10547  nfsum1  15632  nfsum  15633  fsum2dlem  15712  nfcprod1  15850  nfcprod  15851  fprod2dlem  15922  brabgaf  32586  2ndresdju  32623  bnj981  34933  bnj1388  35016  bnj1445  35027  bnj1489  35039  fineqvrep  35078  bj-opabco  37169  pm11.71  44379  permaxrep  44989  upbdrech  45296  stoweidlem57  46048  or2expropbi  47028  ich2exprop  47465  ichnreuop  47466  ichreuopeq  47467  reuopreuprim  47520  pgind  49699
  Copyright terms: Public domain W3C validator