![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2328, hbex 2329. (Revised by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1778 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1856 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | 3 | nfal 2327 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
5 | 4 | nfn 1856 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
6 | 1, 5 | nfxfr 1851 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 ∃wex 1777 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-or 847 df-ex 1778 df-nf 1782 |
This theorem is referenced by: hbex 2329 nfnf 2330 19.12 2331 eeorOLD 2340 eean 2354 eeeanv 2356 nfmo1 2560 nfeu1 2591 moexexlem 2629 r19.12 3320 r19.12OLD 3321 ceqsex2 3547 nfopab2 5237 cbvopab1 5241 cbvopab1g 5242 cbvopab1s 5244 axrep2 5306 axrep3 5307 axrep4 5308 copsex2t 5512 mosubopt 5529 euotd 5532 nfco 5890 dfdmf 5921 dfrnf 5975 nfdm 5976 fv3 6938 oprabv 7510 nfoprab2 7512 nfoprab3 7513 nfoprab 7514 cbvoprab1 7537 cbvoprab2 7538 cbvoprab3 7541 nffrecs 8324 nfwrecsOLD 8358 ac6sfi 9348 aceq1 10186 zfcndrep 10683 zfcndinf 10687 nfsum1 15738 nfsum 15739 fsum2dlem 15818 nfcprod1 15956 nfcprod 15957 fprod2dlem 16028 brabgaf 32630 2ndresdju 32667 cnvoprabOLD 32734 bnj981 34926 bnj1388 35009 bnj1445 35020 bnj1489 35032 fineqvrep 35071 bj-opabco 37154 pm11.71 44366 upbdrech 45220 stoweidlem57 45978 or2expropbi 46949 ich2exprop 47345 ichnreuop 47346 ichreuopeq 47347 reuopreuprim 47400 pgind 48809 |
Copyright terms: Public domain | W3C validator |