MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfex Structured version   Visualization version   GIF version

Theorem nfex 2328
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2328, hbex 2329. (Revised by Wolf Lammen, 16-Oct-2021.)
Hypothesis
Ref Expression
nfex.1 𝑥𝜑
Assertion
Ref Expression
nfex 𝑥𝑦𝜑

Proof of Theorem nfex
StepHypRef Expression
1 df-ex 1778 . 2 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
2 nfex.1 . . . . 5 𝑥𝜑
32nfn 1856 . . . 4 𝑥 ¬ 𝜑
43nfal 2327 . . 3 𝑥𝑦 ¬ 𝜑
54nfn 1856 . 2 𝑥 ¬ ∀𝑦 ¬ 𝜑
61, 5nfxfr 1851 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  hbex  2329  nfnf  2330  19.12  2331  eeorOLD  2340  eean  2354  eeeanv  2356  nfmo1  2560  nfeu1  2591  moexexlem  2629  r19.12  3320  r19.12OLD  3321  ceqsex2  3547  nfopab2  5237  cbvopab1  5241  cbvopab1g  5242  cbvopab1s  5244  axrep2  5306  axrep3  5307  axrep4  5308  copsex2t  5512  mosubopt  5529  euotd  5532  nfco  5890  dfdmf  5921  dfrnf  5975  nfdm  5976  fv3  6938  oprabv  7510  nfoprab2  7512  nfoprab3  7513  nfoprab  7514  cbvoprab1  7537  cbvoprab2  7538  cbvoprab3  7541  nffrecs  8324  nfwrecsOLD  8358  ac6sfi  9348  aceq1  10186  zfcndrep  10683  zfcndinf  10687  nfsum1  15738  nfsum  15739  fsum2dlem  15818  nfcprod1  15956  nfcprod  15957  fprod2dlem  16028  brabgaf  32630  2ndresdju  32667  cnvoprabOLD  32734  bnj981  34926  bnj1388  35009  bnj1445  35020  bnj1489  35032  fineqvrep  35071  bj-opabco  37154  pm11.71  44366  upbdrech  45220  stoweidlem57  45978  or2expropbi  46949  ich2exprop  47345  ichnreuop  47346  ichreuopeq  47347  reuopreuprim  47400  pgind  48809
  Copyright terms: Public domain W3C validator