MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfex Structured version   Visualization version   GIF version

Theorem nfex 2323
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.)
Hypothesis
Ref Expression
nfex.1 𝑥𝜑
Assertion
Ref Expression
nfex 𝑥𝑦𝜑

Proof of Theorem nfex
StepHypRef Expression
1 df-ex 1780 . 2 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
2 nfex.1 . . . . 5 𝑥𝜑
32nfn 1857 . . . 4 𝑥 ¬ 𝜑
43nfal 2322 . . 3 𝑥𝑦 ¬ 𝜑
54nfn 1857 . 2 𝑥 ¬ ∀𝑦 ¬ 𝜑
61, 5nfxfr 1853 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  hbex  2324  nfnf  2325  19.12  2326  eean  2346  eeeanv  2348  ee4anv  2349  nfmo1  2550  nfeu1  2581  moexexlem  2619  r19.12  3278  ceqsex2  3490  nfopab2  5163  cbvopab1  5166  cbvopab1g  5167  cbvopab1s  5169  axrep2  5221  axrep3  5222  axrep4OLD  5225  copsex2t  5435  mosubopt  5453  euotd  5456  nfco  5808  dfdmf  5839  dfrnf  5892  nfdm  5893  fv3  6840  oprabv  7409  nfoprab2  7411  nfoprab3  7412  nfoprab  7413  cbvoprab1  7436  cbvoprab2  7437  cbvoprab3  7440  nffrecs  8216  ac6sfi  9173  aceq1  10011  zfcndrep  10508  zfcndinf  10512  nfsum1  15597  nfsum  15598  fsum2dlem  15677  nfcprod1  15815  nfcprod  15816  fprod2dlem  15887  brabgaf  32553  2ndresdju  32592  bnj981  34917  bnj1388  35000  bnj1445  35011  bnj1489  35023  fineqvrep  35070  bj-opabco  37166  pm11.71  44374  permaxrep  44984  upbdrech  45291  stoweidlem57  46042  or2expropbi  47022  ich2exprop  47459  ichnreuop  47460  ichreuopeq  47461  reuopreuprim  47514  pgind  49706
  Copyright terms: Public domain W3C validator