Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2318, hbex 2319. (Revised by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | 3 | nfal 2317 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
5 | 4 | nfn 1860 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
6 | 1, 5 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1783 df-nf 1787 |
This theorem is referenced by: hbex 2319 nfnf 2320 19.12 2321 eeorOLD 2331 eean 2346 eeeanv 2348 nfmo1 2557 nfeu1 2588 moexexlem 2628 r19.12 3257 r19.12OLD 3258 ceqsex2 3482 nfopab2 5145 cbvopab1 5149 cbvopab1g 5150 cbvopab1s 5152 axrep2 5212 axrep3 5213 axrep4 5214 copsex2t 5406 copsex2gOLD 5408 mosubopt 5424 euotd 5427 nfco 5774 dfdmf 5805 dfrnf 5859 nfdm 5860 fv3 6792 oprabv 7335 nfoprab2 7337 nfoprab3 7338 nfoprab 7339 cbvoprab1 7362 cbvoprab2 7363 cbvoprab3 7366 nffrecs 8099 nfwrecsOLD 8133 ac6sfi 9058 aceq1 9873 zfcndrep 10370 zfcndinf 10374 nfsum1 15401 nfsum 15402 nfsumOLD 15403 fsum2dlem 15482 nfcprod1 15620 nfcprod 15621 fprod2dlem 15690 brabgaf 30948 2ndresdju 30986 cnvoprabOLD 31055 bnj981 32930 bnj1388 33013 bnj1445 33024 bnj1489 33036 fineqvrep 33064 bj-opabco 35359 pm11.71 42015 upbdrech 42844 stoweidlem57 43598 or2expropbi 44528 ich2exprop 44923 ichnreuop 44924 ichreuopeq 44925 reuopreuprim 44978 |
Copyright terms: Public domain | W3C validator |