| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 3 | nfal 2322 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: hbex 2324 nfnf 2325 19.12 2326 eean 2346 eeeanv 2348 ee4anv 2349 nfmo1 2550 nfeu1 2581 moexexlem 2619 r19.12 3288 ceqsex2 3501 nfopab2 5178 cbvopab1 5181 cbvopab1g 5182 cbvopab1s 5184 axrep2 5237 axrep3 5238 axrep4OLD 5241 copsex2t 5452 mosubopt 5470 euotd 5473 nfco 5829 dfdmf 5860 dfrnf 5914 nfdm 5915 fv3 6876 oprabv 7449 nfoprab2 7451 nfoprab3 7452 nfoprab 7453 cbvoprab1 7476 cbvoprab2 7477 cbvoprab3 7480 nffrecs 8262 ac6sfi 9231 aceq1 10070 zfcndrep 10567 zfcndinf 10571 nfsum1 15656 nfsum 15657 fsum2dlem 15736 nfcprod1 15874 nfcprod 15875 fprod2dlem 15946 brabgaf 32536 2ndresdju 32573 bnj981 34940 bnj1388 35023 bnj1445 35034 bnj1489 35046 fineqvrep 35085 bj-opabco 37176 pm11.71 44386 permaxrep 44996 upbdrech 45303 stoweidlem57 46055 or2expropbi 47035 ich2exprop 47472 ichnreuop 47473 ichreuopeq 47474 reuopreuprim 47527 pgind 49706 |
| Copyright terms: Public domain | W3C validator |