Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2322, hbex 2323. (Revised by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1787 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1864 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | 3 | nfal 2321 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
5 | 4 | nfn 1864 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
6 | 1, 5 | nfxfr 1859 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1540 ∃wex 1786 Ⅎwnf 1790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-10 2141 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1787 df-nf 1791 |
This theorem is referenced by: hbex 2323 nfnf 2324 19.12 2325 eeorOLD 2335 eean 2350 eeeanv 2352 nfmo1 2559 nfeu1 2590 moexexlem 2630 r19.12 3255 r19.12OLD 3256 ceqsex2 3481 nfopab2 5150 cbvopab1 5154 cbvopab1g 5155 cbvopab1s 5157 axrep2 5217 axrep3 5218 axrep4 5219 copsex2t 5410 copsex2gOLD 5412 mosubopt 5428 euotd 5431 nfco 5773 dfdmf 5804 dfrnf 5858 nfdm 5859 fv3 6789 oprabv 7330 nfoprab2 7332 nfoprab3 7333 nfoprab 7334 cbvoprab1 7357 cbvoprab2 7358 cbvoprab3 7361 nffrecs 8091 nfwrecsOLD 8125 ac6sfi 9046 aceq1 9884 zfcndrep 10381 zfcndinf 10385 nfsum1 15412 nfsum 15413 nfsumOLD 15414 fsum2dlem 15493 nfcprod1 15631 nfcprod 15632 fprod2dlem 15701 brabgaf 30957 2ndresdju 30995 cnvoprabOLD 31064 bnj981 32939 bnj1388 33022 bnj1445 33033 bnj1489 33045 fineqvrep 33073 bj-opabco 35368 pm11.71 41997 upbdrech 42826 stoweidlem57 43580 or2expropbi 44507 ich2exprop 44902 ichnreuop 44903 ichreuopeq 44904 reuopreuprim 44957 |
Copyright terms: Public domain | W3C validator |