Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2322, hbex 2323. (Revised by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1784 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1861 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | 3 | nfal 2321 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
5 | 4 | nfn 1861 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
6 | 1, 5 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1537 ∃wex 1783 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-or 844 df-ex 1784 df-nf 1788 |
This theorem is referenced by: hbex 2323 nfnf 2324 19.12 2325 eeor 2333 eean 2348 eeeanv 2350 nfmo1 2557 nfeu1 2588 moexexlem 2628 r19.12 3252 r19.12OLD 3253 ceqsex2 3472 nfopab2 5141 cbvopab1 5145 cbvopab1g 5146 cbvopab1s 5148 axrep2 5208 axrep3 5209 axrep4 5210 copsex2t 5400 copsex2gOLD 5402 mosubopt 5418 euotd 5421 nfco 5763 dfdmf 5794 dfrnf 5848 nfdm 5849 fv3 6774 oprabv 7313 nfoprab2 7315 nfoprab3 7316 nfoprab 7317 cbvoprab1 7340 cbvoprab2 7341 cbvoprab3 7344 nffrecs 8070 nfwrecsOLD 8104 ac6sfi 8988 aceq1 9804 zfcndrep 10301 zfcndinf 10305 nfsum1 15329 nfsum 15330 nfsumOLD 15331 fsum2dlem 15410 nfcprod1 15548 nfcprod 15549 fprod2dlem 15618 brabgaf 30849 2ndresdju 30887 cnvoprabOLD 30957 bnj981 32830 bnj1388 32913 bnj1445 32924 bnj1489 32936 fineqvrep 32964 bj-opabco 35286 pm11.71 41904 upbdrech 42734 stoweidlem57 43488 or2expropbi 44415 ich2exprop 44811 ichnreuop 44812 ichreuopeq 44813 reuopreuprim 44866 |
Copyright terms: Public domain | W3C validator |