| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 3 | nfal 2322 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: hbex 2324 nfnf 2325 19.12 2326 eean 2346 eeeanv 2348 ee4anv 2349 nfmo1 2550 nfeu1 2581 moexexlem 2619 r19.12 3278 ceqsex2 3490 nfopab2 5163 cbvopab1 5166 cbvopab1g 5167 cbvopab1s 5169 axrep2 5221 axrep3 5222 axrep4OLD 5225 copsex2t 5435 mosubopt 5453 euotd 5456 nfco 5808 dfdmf 5839 dfrnf 5892 nfdm 5893 fv3 6840 oprabv 7409 nfoprab2 7411 nfoprab3 7412 nfoprab 7413 cbvoprab1 7436 cbvoprab2 7437 cbvoprab3 7440 nffrecs 8216 ac6sfi 9173 aceq1 10011 zfcndrep 10508 zfcndinf 10512 nfsum1 15597 nfsum 15598 fsum2dlem 15677 nfcprod1 15815 nfcprod 15816 fprod2dlem 15887 brabgaf 32553 2ndresdju 32592 bnj981 34917 bnj1388 35000 bnj1445 35011 bnj1489 35023 fineqvrep 35070 bj-opabco 37166 pm11.71 44374 permaxrep 44984 upbdrech 45291 stoweidlem57 46042 or2expropbi 47022 ich2exprop 47459 ichnreuop 47460 ichreuopeq 47461 reuopreuprim 47514 pgind 49706 |
| Copyright terms: Public domain | W3C validator |