MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfex Structured version   Visualization version   GIF version

Theorem nfex 2323
Description: If 𝑥 is not free in 𝜑, then it is not free in 𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.)
Hypothesis
Ref Expression
nfex.1 𝑥𝜑
Assertion
Ref Expression
nfex 𝑥𝑦𝜑

Proof of Theorem nfex
StepHypRef Expression
1 df-ex 1777 . 2 (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑)
2 nfex.1 . . . . 5 𝑥𝜑
32nfn 1855 . . . 4 𝑥 ¬ 𝜑
43nfal 2322 . . 3 𝑥𝑦 ¬ 𝜑
54nfn 1855 . 2 𝑥 ¬ ∀𝑦 ¬ 𝜑
61, 5nfxfr 1850 1 𝑥𝑦𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wal 1535  wex 1776  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-10 2139  ax-11 2155  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-or 848  df-ex 1777  df-nf 1781
This theorem is referenced by:  hbex  2324  nfnf  2325  19.12  2326  eeorOLD  2335  eean  2349  eeeanv  2351  nfmo1  2555  nfeu1  2586  moexexlem  2624  r19.12  3312  r19.12OLD  3313  ceqsex2  3535  nfopab2  5219  cbvopab1  5223  cbvopab1g  5224  cbvopab1s  5226  axrep2  5288  axrep3  5289  axrep4OLD  5292  copsex2t  5503  mosubopt  5520  euotd  5523  nfco  5879  dfdmf  5910  dfrnf  5964  nfdm  5965  fv3  6925  oprabv  7493  nfoprab2  7495  nfoprab3  7496  nfoprab  7497  cbvoprab1  7520  cbvoprab2  7521  cbvoprab3  7524  nffrecs  8307  nfwrecsOLD  8341  ac6sfi  9318  aceq1  10155  zfcndrep  10652  zfcndinf  10656  nfsum1  15723  nfsum  15724  fsum2dlem  15803  nfcprod1  15941  nfcprod  15942  fprod2dlem  16013  brabgaf  32628  2ndresdju  32666  cnvoprabOLD  32738  bnj981  34943  bnj1388  35026  bnj1445  35037  bnj1489  35049  fineqvrep  35088  bj-opabco  37171  pm11.71  44393  upbdrech  45256  stoweidlem57  46013  or2expropbi  46984  ich2exprop  47396  ichnreuop  47397  ichreuopeq  47398  reuopreuprim  47451  pgind  48948
  Copyright terms: Public domain W3C validator