| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2324, hbex 2325. (Revised by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 3 | nfal 2323 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: hbex 2325 nfnf 2326 19.12 2327 eeorOLD 2335 eean 2349 eeeanv 2351 ee4anv 2352 nfmo1 2556 nfeu1 2587 moexexlem 2625 r19.12 3294 ceqsex2 3514 nfopab2 5190 cbvopab1 5193 cbvopab1g 5194 cbvopab1s 5196 axrep2 5252 axrep3 5253 axrep4OLD 5256 copsex2t 5467 mosubopt 5485 euotd 5488 nfco 5845 dfdmf 5876 dfrnf 5930 nfdm 5931 fv3 6894 oprabv 7467 nfoprab2 7469 nfoprab3 7470 nfoprab 7471 cbvoprab1 7494 cbvoprab2 7495 cbvoprab3 7498 nffrecs 8282 nfwrecsOLD 8316 ac6sfi 9292 aceq1 10131 zfcndrep 10628 zfcndinf 10632 nfsum1 15706 nfsum 15707 fsum2dlem 15786 nfcprod1 15924 nfcprod 15925 fprod2dlem 15996 brabgaf 32588 2ndresdju 32627 bnj981 34981 bnj1388 35064 bnj1445 35075 bnj1489 35087 fineqvrep 35126 bj-opabco 37206 pm11.71 44421 permaxrep 45031 upbdrech 45334 stoweidlem57 46086 or2expropbi 47063 ich2exprop 47485 ichnreuop 47486 ichreuopeq 47487 reuopreuprim 47540 pgind 49581 |
| Copyright terms: Public domain | W3C validator |