| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2325, hbex 2326. (Revised by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1781 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 3 | nfal 2324 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
| 5 | 4 | nfn 1858 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
| 6 | 1, 5 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1539 ∃wex 1780 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: hbex 2326 nfnf 2327 19.12 2328 eean 2348 eeeanv 2350 ee4anv 2351 nfmo1 2552 nfeu1 2583 moexexlem 2621 r19.12 3281 ceqsex2 3489 nfopab2 5160 cbvopab1 5163 cbvopab1g 5164 cbvopab1s 5166 axrep2 5218 axrep3 5219 axrep4OLD 5222 copsex2t 5430 mosubopt 5448 euotd 5451 nfco 5804 dfdmf 5835 dfrnf 5889 nfdm 5890 fv3 6840 oprabv 7406 nfoprab2 7408 nfoprab3 7409 nfoprab 7410 cbvoprab1 7433 cbvoprab2 7434 cbvoprab3 7437 nffrecs 8213 ac6sfi 9168 aceq1 10008 zfcndrep 10505 zfcndinf 10509 nfsum1 15597 nfsum 15598 fsum2dlem 15677 nfcprod1 15815 nfcprod 15816 fprod2dlem 15887 brabgaf 32589 2ndresdju 32631 bnj981 34962 bnj1388 35045 bnj1445 35056 bnj1489 35068 fineqvrep 35137 bj-opabco 37232 pm11.71 44500 permaxrep 45109 upbdrech 45416 stoweidlem57 46165 or2expropbi 47144 ich2exprop 47581 ichnreuop 47582 ichreuopeq 47583 reuopreuprim 47636 pgind 49828 |
| Copyright terms: Public domain | W3C validator |