| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 3 | nfal 2322 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: hbex 2324 nfnf 2325 19.12 2326 eean 2346 eeeanv 2348 ee4anv 2349 nfmo1 2551 nfeu1 2582 moexexlem 2620 r19.12 3290 ceqsex2 3504 nfopab2 5181 cbvopab1 5184 cbvopab1g 5185 cbvopab1s 5187 axrep2 5240 axrep3 5241 axrep4OLD 5244 copsex2t 5455 mosubopt 5473 euotd 5476 nfco 5832 dfdmf 5863 dfrnf 5917 nfdm 5918 fv3 6879 oprabv 7452 nfoprab2 7454 nfoprab3 7455 nfoprab 7456 cbvoprab1 7479 cbvoprab2 7480 cbvoprab3 7483 nffrecs 8265 ac6sfi 9238 aceq1 10077 zfcndrep 10574 zfcndinf 10578 nfsum1 15663 nfsum 15664 fsum2dlem 15743 nfcprod1 15881 nfcprod 15882 fprod2dlem 15953 brabgaf 32543 2ndresdju 32580 bnj981 34947 bnj1388 35030 bnj1445 35041 bnj1489 35053 fineqvrep 35092 bj-opabco 37183 pm11.71 44393 permaxrep 45003 upbdrech 45310 stoweidlem57 46062 or2expropbi 47039 ich2exprop 47476 ichnreuop 47477 ichreuopeq 47478 reuopreuprim 47531 pgind 49710 |
| Copyright terms: Public domain | W3C validator |