![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2318, hbex 2319. (Revised by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1783 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1861 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | 3 | nfal 2317 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
5 | 4 | nfn 1861 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
6 | 1, 5 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1540 ∃wex 1782 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2138 ax-11 2155 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-or 847 df-ex 1783 df-nf 1787 |
This theorem is referenced by: hbex 2319 nfnf 2320 19.12 2321 eeorOLD 2331 eean 2345 eeeanv 2347 nfmo1 2552 nfeu1 2583 moexexlem 2623 r19.12 3312 r19.12OLD 3313 ceqsex2 3530 nfopab2 5220 cbvopab1 5224 cbvopab1g 5225 cbvopab1s 5227 axrep2 5289 axrep3 5290 axrep4 5291 copsex2t 5493 copsex2gOLD 5495 mosubopt 5511 euotd 5514 nfco 5866 dfdmf 5897 dfrnf 5950 nfdm 5951 fv3 6910 oprabv 7469 nfoprab2 7471 nfoprab3 7472 nfoprab 7473 cbvoprab1 7496 cbvoprab2 7497 cbvoprab3 7500 nffrecs 8268 nfwrecsOLD 8302 ac6sfi 9287 aceq1 10112 zfcndrep 10609 zfcndinf 10613 nfsum1 15636 nfsum 15637 fsum2dlem 15716 nfcprod1 15854 nfcprod 15855 fprod2dlem 15924 brabgaf 31837 2ndresdju 31874 cnvoprabOLD 31945 bnj981 33961 bnj1388 34044 bnj1445 34055 bnj1489 34067 fineqvrep 34095 bj-opabco 36069 pm11.71 43156 upbdrech 44015 stoweidlem57 44773 or2expropbi 45744 ich2exprop 46139 ichnreuop 46140 ichreuopeq 46141 reuopreuprim 46194 pgind 47762 |
Copyright terms: Public domain | W3C validator |