![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1777 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1855 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | 3 | nfal 2322 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
5 | 4 | nfn 1855 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
6 | 1, 5 | nfxfr 1850 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1535 ∃wex 1776 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-10 2139 ax-11 2155 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1777 df-nf 1781 |
This theorem is referenced by: hbex 2324 nfnf 2325 19.12 2326 eeorOLD 2335 eean 2349 eeeanv 2351 nfmo1 2555 nfeu1 2586 moexexlem 2624 r19.12 3312 r19.12OLD 3313 ceqsex2 3535 nfopab2 5219 cbvopab1 5223 cbvopab1g 5224 cbvopab1s 5226 axrep2 5288 axrep3 5289 axrep4OLD 5292 copsex2t 5503 mosubopt 5520 euotd 5523 nfco 5879 dfdmf 5910 dfrnf 5964 nfdm 5965 fv3 6925 oprabv 7493 nfoprab2 7495 nfoprab3 7496 nfoprab 7497 cbvoprab1 7520 cbvoprab2 7521 cbvoprab3 7524 nffrecs 8307 nfwrecsOLD 8341 ac6sfi 9318 aceq1 10155 zfcndrep 10652 zfcndinf 10656 nfsum1 15723 nfsum 15724 fsum2dlem 15803 nfcprod1 15941 nfcprod 15942 fprod2dlem 16013 brabgaf 32628 2ndresdju 32666 cnvoprabOLD 32738 bnj981 34943 bnj1388 35026 bnj1445 35037 bnj1489 35049 fineqvrep 35088 bj-opabco 37171 pm11.71 44393 upbdrech 45256 stoweidlem57 46013 or2expropbi 46984 ich2exprop 47396 ichnreuop 47397 ichreuopeq 47398 reuopreuprim 47451 pgind 48948 |
Copyright terms: Public domain | W3C validator |