| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2323, hbex 2324. (Revised by Wolf Lammen, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| nfex.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ex 1780 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
| 2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
| 4 | 3 | nfal 2322 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
| 5 | 4 | nfn 1857 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
| 6 | 1, 5 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: hbex 2324 nfnf 2325 19.12 2326 eean 2346 eeeanv 2348 ee4anv 2349 nfmo1 2550 nfeu1 2581 moexexlem 2619 r19.12 3285 ceqsex2 3498 nfopab2 5173 cbvopab1 5176 cbvopab1g 5177 cbvopab1s 5179 axrep2 5232 axrep3 5233 axrep4OLD 5236 copsex2t 5447 mosubopt 5465 euotd 5468 nfco 5819 dfdmf 5850 dfrnf 5903 nfdm 5904 fv3 6858 oprabv 7429 nfoprab2 7431 nfoprab3 7432 nfoprab 7433 cbvoprab1 7456 cbvoprab2 7457 cbvoprab3 7460 nffrecs 8239 ac6sfi 9207 aceq1 10046 zfcndrep 10543 zfcndinf 10547 nfsum1 15632 nfsum 15633 fsum2dlem 15712 nfcprod1 15850 nfcprod 15851 fprod2dlem 15922 brabgaf 32586 2ndresdju 32623 bnj981 34933 bnj1388 35016 bnj1445 35027 bnj1489 35039 fineqvrep 35078 bj-opabco 37169 pm11.71 44379 permaxrep 44989 upbdrech 45296 stoweidlem57 46048 or2expropbi 47028 ich2exprop 47465 ichnreuop 47466 ichreuopeq 47467 reuopreuprim 47520 pgind 49699 |
| Copyright terms: Public domain | W3C validator |