![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfex | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, then it is not free in ∃𝑦𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) Reduce symbol count in nfex 2317, hbex 2318. (Revised by Wolf Lammen, 16-Oct-2021.) |
Ref | Expression |
---|---|
nfex.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfex | ⊢ Ⅎ𝑥∃𝑦𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ex 1782 | . 2 ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦 ¬ 𝜑) | |
2 | nfex.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | nfn 1860 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜑 |
4 | 3 | nfal 2316 | . . 3 ⊢ Ⅎ𝑥∀𝑦 ¬ 𝜑 |
5 | 4 | nfn 1860 | . 2 ⊢ Ⅎ𝑥 ¬ ∀𝑦 ¬ 𝜑 |
6 | 1, 5 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥∃𝑦𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1539 ∃wex 1781 Ⅎwnf 1785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-or 846 df-ex 1782 df-nf 1786 |
This theorem is referenced by: hbex 2318 nfnf 2319 19.12 2320 eeorOLD 2330 eean 2344 eeeanv 2346 nfmo1 2551 nfeu1 2582 moexexlem 2622 r19.12 3311 r19.12OLD 3312 ceqsex2 3529 nfopab2 5218 cbvopab1 5222 cbvopab1g 5223 cbvopab1s 5225 axrep2 5287 axrep3 5288 axrep4 5289 copsex2t 5491 copsex2gOLD 5493 mosubopt 5509 euotd 5512 nfco 5863 dfdmf 5894 dfrnf 5947 nfdm 5948 fv3 6906 oprabv 7465 nfoprab2 7467 nfoprab3 7468 nfoprab 7469 cbvoprab1 7492 cbvoprab2 7493 cbvoprab3 7496 nffrecs 8264 nfwrecsOLD 8298 ac6sfi 9283 aceq1 10108 zfcndrep 10605 zfcndinf 10609 nfsum1 15632 nfsum 15633 fsum2dlem 15712 nfcprod1 15850 nfcprod 15851 fprod2dlem 15920 brabgaf 31824 2ndresdju 31861 cnvoprabOLD 31932 bnj981 33949 bnj1388 34032 bnj1445 34043 bnj1489 34055 fineqvrep 34083 bj-opabco 36057 pm11.71 43141 upbdrech 44001 stoweidlem57 44759 or2expropbi 45730 ich2exprop 46125 ichnreuop 46126 ichreuopeq 46127 reuopreuprim 46180 pgind 47715 |
Copyright terms: Public domain | W3C validator |