Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2exanali | Structured version Visualization version GIF version |
Description: Theorem *11.521 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) |
Ref | Expression |
---|---|
2exanali | ⊢ (¬ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nalexn 1830 | . . 3 ⊢ (¬ ∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓)) | |
2 | 1 | con1bii 357 | . 2 ⊢ (¬ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
3 | annim 404 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
4 | 3 | 2exbii 1851 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓)) |
5 | 2, 4 | xchnxbir 333 | 1 ⊢ (¬ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: dfacycgr1 33106 |
Copyright terms: Public domain | W3C validator |