Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exanali Structured version   Visualization version   GIF version

Theorem 2exanali 1853
 Description: Theorem *11.521 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2exanali (¬ ∃𝑥𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))

Proof of Theorem 2exanali
StepHypRef Expression
1 2nalexn 1821 . . 3 (¬ ∀𝑥𝑦(𝜑𝜓) ↔ ∃𝑥𝑦 ¬ (𝜑𝜓))
21con1bii 359 . 2 (¬ ∃𝑥𝑦 ¬ (𝜑𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))
3 annim 406 . . 3 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
432exbii 1842 . 2 (∃𝑥𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥𝑦 ¬ (𝜑𝜓))
52, 4xchnxbir 335 1 (¬ ∃𝑥𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398  ∀wal 1528  ∃wex 1773 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803 This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1774 This theorem is referenced by:  dfacycgr1  32384
 Copyright terms: Public domain W3C validator