MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2exanali Structured version   Visualization version   GIF version

Theorem 2exanali 1863
Description: Theorem *11.521 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.)
Assertion
Ref Expression
2exanali (¬ ∃𝑥𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))

Proof of Theorem 2exanali
StepHypRef Expression
1 2nalexn 1830 . . 3 (¬ ∀𝑥𝑦(𝜑𝜓) ↔ ∃𝑥𝑦 ¬ (𝜑𝜓))
21con1bii 357 . 2 (¬ ∃𝑥𝑦 ¬ (𝜑𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))
3 annim 404 . . 3 ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑𝜓))
432exbii 1851 . 2 (∃𝑥𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥𝑦 ¬ (𝜑𝜓))
52, 4xchnxbir 333 1 (¬ ∃𝑥𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥𝑦(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  dfacycgr1  33106
  Copyright terms: Public domain W3C validator