|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > 2exanali | Structured version Visualization version GIF version | ||
| Description: Theorem *11.521 in [WhiteheadRussell] p. 164. (Contributed by Andrew Salmon, 24-May-2011.) | 
| Ref | Expression | 
|---|---|
| 2exanali | ⊢ (¬ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2nalexn 1827 | . . 3 ⊢ (¬ ∀𝑥∀𝑦(𝜑 → 𝜓) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓)) | |
| 2 | 1 | con1bii 356 | . 2 ⊢ (¬ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) | 
| 3 | annim 403 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
| 4 | 3 | 2exbii 1848 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∃𝑥∃𝑦 ¬ (𝜑 → 𝜓)) | 
| 5 | 2, 4 | xchnxbir 333 | 1 ⊢ (¬ ∃𝑥∃𝑦(𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 | 
| This theorem is referenced by: dfacycgr1 35150 | 
| Copyright terms: Public domain | W3C validator |