MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ralbida Structured version   Visualization version   GIF version

Theorem 2ralbida 3159
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 24-Feb-2004.)
Hypotheses
Ref Expression
2ralbida.1 𝑥𝜑
2ralbida.2 𝑦𝜑
2ralbida.3 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
Assertion
Ref Expression
2ralbida (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem 2ralbida
StepHypRef Expression
1 2ralbida.1 . 2 𝑥𝜑
2 2ralbida.2 . . . 4 𝑦𝜑
3 nfv 1918 . . . 4 𝑦 𝑥𝐴
42, 3nfan 1903 . . 3 𝑦(𝜑𝑥𝐴)
5 2ralbida.3 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → (𝜓𝜒))
65anassrs 467 . . 3 (((𝜑𝑥𝐴) ∧ 𝑦𝐵) → (𝜓𝜒))
74, 6ralbida 3156 . 2 ((𝜑𝑥𝐴) → (∀𝑦𝐵 𝜓 ↔ ∀𝑦𝐵 𝜒))
81, 7ralbida 3156 1 (𝜑 → (∀𝑥𝐴𝑦𝐵 𝜓 ↔ ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wnf 1787  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-ral 3068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator