| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r2exf | Structured version Visualization version GIF version | ||
| Description: Double restricted existential quantification. For a version based on fewer axioms see r2ex 3196. (Contributed by Mario Carneiro, 14-Oct-2016.) Use r2exlem 3143. (Revised by Wolf Lammen, 10-Jan-2020.) |
| Ref | Expression |
|---|---|
| r2exf.1 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| r2exf | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r2exf.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | r2alf 3281 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ¬ 𝜑)) |
| 3 | 2 | r2exlem 3143 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 Ⅎwnfc 2890 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: rexcomf 3303 |
| Copyright terms: Public domain | W3C validator |