| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbida | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralbida.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbida | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | ralimdaa 3236 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| 5 | 2 | biimprd 248 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜒 → 𝜓)) |
| 6 | 1, 5 | ralimdaa 3236 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 7 | 4, 6 | impbid 212 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: ralbid 3248 2ralbida 3258 naddsuc2 8642 ac6num 10408 neiptopreu 23053 istrkg2ld 28440 funcnv5mpt 32642 nadd1suc 43374 xrralrecnnge 45379 climf2 45657 clim2f2 45661 limsupub 45695 climinfmpt 45706 limsupubuzmpt 45710 limsupre2mpt 45721 limsupre3mpt 45725 limsupreuzmpt 45730 xlimmnfmpt 45834 xlimpnfmpt 45835 smfsupmpt 46806 smfinfmpt 46810 |
| Copyright terms: Public domain | W3C validator |