MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbida Structured version   Visualization version   GIF version

Theorem ralbida 3243
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.)
Hypotheses
Ref Expression
ralbida.1 𝑥𝜑
ralbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralbida (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))

Proof of Theorem ralbida
StepHypRef Expression
1 ralbida.1 . . 3 𝑥𝜑
2 ralbida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32biimpd 229 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3ralimdaa 3233 . 2 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
52biimprd 248 . . 3 ((𝜑𝑥𝐴) → (𝜒𝜓))
61, 5ralimdaa 3233 . 2 (𝜑 → (∀𝑥𝐴 𝜒 → ∀𝑥𝐴 𝜓))
74, 6impbid 212 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1784  wcel 2111  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-ral 3048
This theorem is referenced by:  ralbid  3245  2ralbida  3255  naddsuc2  8616  ac6num  10370  neiptopreu  23048  istrkg2ld  28438  funcnv5mpt  32650  nadd1suc  43484  xrralrecnnge  45487  climf2  45763  clim2f2  45767  limsupub  45801  climinfmpt  45812  limsupubuzmpt  45816  limsupre2mpt  45827  limsupre3mpt  45831  limsupreuzmpt  45836  xlimmnfmpt  45940  xlimpnfmpt  45941  smfsupmpt  46912  smfinfmpt  46916
  Copyright terms: Public domain W3C validator