| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbida | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralbida.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbida | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | ralimdaa 3233 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| 5 | 2 | biimprd 248 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜒 → 𝜓)) |
| 6 | 1, 5 | ralimdaa 3233 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 7 | 4, 6 | impbid 212 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3048 |
| This theorem is referenced by: ralbid 3245 2ralbida 3255 naddsuc2 8616 ac6num 10370 neiptopreu 23048 istrkg2ld 28438 funcnv5mpt 32650 nadd1suc 43484 xrralrecnnge 45487 climf2 45763 clim2f2 45767 limsupub 45801 climinfmpt 45812 limsupubuzmpt 45816 limsupre2mpt 45827 limsupre3mpt 45831 limsupreuzmpt 45836 xlimmnfmpt 45940 xlimpnfmpt 45941 smfsupmpt 46912 smfinfmpt 46916 |
| Copyright terms: Public domain | W3C validator |