![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralbida | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) |
Ref | Expression |
---|---|
ralbida.1 | ⊢ Ⅎ𝑥𝜑 |
ralbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralbida | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | pm5.74da 800 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 → 𝜓) ↔ (𝑥 ∈ 𝐴 → 𝜒))) |
4 | 1, 3 | albid 2191 | . 2 ⊢ (𝜑 → (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
5 | df-ral 3112 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
6 | df-ral 3112 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
7 | 4, 5, 6 | 3bitr4g 315 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∀wal 1523 Ⅎwnf 1769 ∈ wcel 2083 ∀wral 3107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-12 2143 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-nf 1770 df-ral 3112 |
This theorem is referenced by: ralbid 3197 2ralbida 3198 ralbiOLD 3199 ac6num 9754 neiptopreu 21429 istrkg2ld 25932 funcnv5mpt 30099 xrralrecnnge 41224 climf2 41510 clim2f2 41514 limsupub 41548 climinfmpt 41559 limsupubuzmpt 41563 limsupre2mpt 41574 limsupre3mpt 41578 limsupreuzmpt 41583 xlimmnfmpt 41687 xlimpnfmpt 41688 smfsupmpt 42653 smfinfmpt 42657 |
Copyright terms: Public domain | W3C validator |