| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbida | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralbida.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbida | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | ralimdaa 3238 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| 5 | 2 | biimprd 248 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜒 → 𝜓)) |
| 6 | 1, 5 | ralimdaa 3238 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 7 | 4, 6 | impbid 212 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 |
| This theorem is referenced by: ralbid 3250 2ralbida 3260 naddsuc2 8665 ac6num 10432 neiptopreu 23020 istrkg2ld 28387 funcnv5mpt 32592 nadd1suc 43381 xrralrecnnge 45386 climf2 45664 clim2f2 45668 limsupub 45702 climinfmpt 45713 limsupubuzmpt 45717 limsupre2mpt 45728 limsupre3mpt 45732 limsupreuzmpt 45737 xlimmnfmpt 45841 xlimpnfmpt 45842 smfsupmpt 46813 smfinfmpt 46817 |
| Copyright terms: Public domain | W3C validator |