MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbida Structured version   Visualization version   GIF version

Theorem ralbida 3240
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.)
Hypotheses
Ref Expression
ralbida.1 𝑥𝜑
ralbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralbida (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))

Proof of Theorem ralbida
StepHypRef Expression
1 ralbida.1 . . 3 𝑥𝜑
2 ralbida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32biimpd 229 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3ralimdaa 3230 . 2 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
52biimprd 248 . . 3 ((𝜑𝑥𝐴) → (𝜒𝜓))
61, 5ralimdaa 3230 . 2 (𝜑 → (∀𝑥𝐴 𝜒 → ∀𝑥𝐴 𝜓))
74, 6impbid 212 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045
This theorem is referenced by:  ralbid  3242  2ralbida  3252  naddsuc2  8619  ac6num  10373  neiptopreu  23018  istrkg2ld  28405  funcnv5mpt  32612  nadd1suc  43375  xrralrecnnge  45379  climf2  45657  clim2f2  45661  limsupub  45695  climinfmpt  45706  limsupubuzmpt  45710  limsupre2mpt  45721  limsupre3mpt  45725  limsupreuzmpt  45730  xlimmnfmpt  45834  xlimpnfmpt  45835  smfsupmpt  46806  smfinfmpt  46810
  Copyright terms: Public domain W3C validator