MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbida Structured version   Visualization version   GIF version

Theorem ralbida 3158
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.)
Hypotheses
Ref Expression
ralbida.1 𝑥𝜑
ralbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralbida (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))

Proof of Theorem ralbida
StepHypRef Expression
1 ralbida.1 . . 3 𝑥𝜑
2 ralbida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32biimpd 228 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3ralimdaa 3142 . 2 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
52biimprd 247 . . 3 ((𝜑𝑥𝐴) → (𝜒𝜓))
61, 5ralimdaa 3142 . 2 (𝜑 → (∀𝑥𝐴 𝜒 → ∀𝑥𝐴 𝜓))
74, 6impbid 211 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wnf 1789  wcel 2109  wral 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-nf 1790  df-ral 3070
This theorem is referenced by:  ralbid  3160  2ralbida  3161  ac6num  10219  neiptopreu  22265  istrkg2ld  26802  funcnv5mpt  30984  xrralrecnnge  42884  climf2  43161  clim2f2  43165  limsupub  43199  climinfmpt  43210  limsupubuzmpt  43214  limsupre2mpt  43225  limsupre3mpt  43229  limsupreuzmpt  43234  xlimmnfmpt  43338  xlimpnfmpt  43339  smfsupmpt  44299  smfinfmpt  44303
  Copyright terms: Public domain W3C validator