MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbida Structured version   Visualization version   GIF version

Theorem ralbida 3194
Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
ralbida.1 𝑥𝜑
ralbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralbida (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))

Proof of Theorem ralbida
StepHypRef Expression
1 ralbida.1 . . 3 𝑥𝜑
2 ralbida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32pm5.74da 803 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
41, 3albid 2222 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑥(𝑥𝐴𝜒)))
5 df-ral 3111 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
6 df-ral 3111 . 2 (∀𝑥𝐴 𝜒 ↔ ∀𝑥(𝑥𝐴𝜒))
74, 5, 63bitr4g 317 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536  wnf 1785  wcel 2111  wral 3106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-nf 1786  df-ral 3111
This theorem is referenced by:  ralbid  3195  2ralbida  3196  ac6num  9890  neiptopreu  21738  istrkg2ld  26254  funcnv5mpt  30431  xrralrecnnge  42024  climf2  42306  clim2f2  42310  limsupub  42344  climinfmpt  42355  limsupubuzmpt  42359  limsupre2mpt  42370  limsupre3mpt  42374  limsupreuzmpt  42379  xlimmnfmpt  42483  xlimpnfmpt  42484  smfsupmpt  43444  smfinfmpt  43448
  Copyright terms: Public domain W3C validator