| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralbida | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted universal quantifier (deduction form). (Contributed by NM, 6-Oct-2003.) (Proof shortened by Wolf Lammen, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| ralbida.1 | ⊢ Ⅎ𝑥𝜑 |
| ralbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralbida | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimpd 229 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) |
| 4 | 1, 3 | ralimdaa 3247 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| 5 | 2 | biimprd 248 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜒 → 𝜓)) |
| 6 | 1, 5 | ralimdaa 3247 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜒 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 7 | 4, 6 | impbid 212 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3053 |
| This theorem is referenced by: ralbid 3259 2ralbida 3269 naddsuc2 8718 ac6num 10498 neiptopreu 23076 istrkg2ld 28444 funcnv5mpt 32651 nadd1suc 43383 xrralrecnnge 45384 climf2 45662 clim2f2 45666 limsupub 45700 climinfmpt 45711 limsupubuzmpt 45715 limsupre2mpt 45726 limsupre3mpt 45730 limsupreuzmpt 45735 xlimmnfmpt 45839 xlimpnfmpt 45840 smfsupmpt 46811 smfinfmpt 46815 |
| Copyright terms: Public domain | W3C validator |