Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichal Structured version   Visualization version   GIF version

Theorem ichal 44918
Description: Move a universal quantifier inside interchangeability. (Contributed by SN, 30-Aug-2023.)
Assertion
Ref Expression
ichal (∀𝑥[𝑎𝑏]𝜑 → [𝑎𝑏]∀𝑥𝜑)
Distinct variable groups:   𝑥,𝑎   𝑥,𝑏
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)

Proof of Theorem ichal
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ax-11 2154 . . 3 (∀𝑥𝑎𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑) → ∀𝑎𝑥𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑))
2 ax-11 2154 . . . 4 (∀𝑥𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑) → ∀𝑏𝑥([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑))
32alimi 1814 . . 3 (∀𝑎𝑥𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑) → ∀𝑎𝑏𝑥([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑))
4 sbal 2159 . . . . . . 7 ([𝑢 / 𝑏]∀𝑥𝜑 ↔ ∀𝑥[𝑢 / 𝑏]𝜑)
542sbbii 2080 . . . . . 6 ([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]∀𝑥𝜑 ↔ [𝑎 / 𝑢][𝑏 / 𝑎]∀𝑥[𝑢 / 𝑏]𝜑)
6 sbal 2159 . . . . . . 7 ([𝑏 / 𝑎]∀𝑥[𝑢 / 𝑏]𝜑 ↔ ∀𝑥[𝑏 / 𝑎][𝑢 / 𝑏]𝜑)
76sbbii 2079 . . . . . 6 ([𝑎 / 𝑢][𝑏 / 𝑎]∀𝑥[𝑢 / 𝑏]𝜑 ↔ [𝑎 / 𝑢]∀𝑥[𝑏 / 𝑎][𝑢 / 𝑏]𝜑)
8 sbal 2159 . . . . . 6 ([𝑎 / 𝑢]∀𝑥[𝑏 / 𝑎][𝑢 / 𝑏]𝜑 ↔ ∀𝑥[𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑)
95, 7, 83bitri 297 . . . . 5 ([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]∀𝑥𝜑 ↔ ∀𝑥[𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑)
10 albi 1821 . . . . 5 (∀𝑥([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑) → (∀𝑥[𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑 ↔ ∀𝑥𝜑))
119, 10syl5bb 283 . . . 4 (∀𝑥([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑) → ([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]∀𝑥𝜑 ↔ ∀𝑥𝜑))
12112alimi 1815 . . 3 (∀𝑎𝑏𝑥([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑) → ∀𝑎𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]∀𝑥𝜑 ↔ ∀𝑥𝜑))
131, 3, 123syl 18 . 2 (∀𝑥𝑎𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑) → ∀𝑎𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]∀𝑥𝜑 ↔ ∀𝑥𝜑))
14 df-ich 44898 . . 3 ([𝑎𝑏]𝜑 ↔ ∀𝑎𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑))
1514albii 1822 . 2 (∀𝑥[𝑎𝑏]𝜑 ↔ ∀𝑥𝑎𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]𝜑𝜑))
16 df-ich 44898 . 2 ([𝑎𝑏]∀𝑥𝜑 ↔ ∀𝑎𝑏([𝑎 / 𝑢][𝑏 / 𝑎][𝑢 / 𝑏]∀𝑥𝜑 ↔ ∀𝑥𝜑))
1713, 15, 163imtr4i 292 1 (∀𝑥[𝑎𝑏]𝜑 → [𝑎𝑏]∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  [wsb 2067  [wich 44897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-11 2154
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-sb 2068  df-ich 44898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator