Step | Hyp | Ref
| Expression |
1 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑏𝜓 |
2 | 1 | sbco2v 2327 |
. . . . . . . . 9
⊢ ([𝑣 / 𝑏][𝑏 / 𝑦]𝜓 ↔ [𝑣 / 𝑦]𝜓) |
3 | 2 | bicomi 223 |
. . . . . . . 8
⊢ ([𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑏][𝑏 / 𝑦]𝜓) |
4 | 3 | sbbii 2079 |
. . . . . . 7
⊢ ([𝑎 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑣 / 𝑏][𝑏 / 𝑦]𝜓) |
5 | | sbcom2 2161 |
. . . . . . 7
⊢ ([𝑎 / 𝑥][𝑣 / 𝑏][𝑏 / 𝑦]𝜓 ↔ [𝑣 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓) |
6 | 4, 5 | bitri 274 |
. . . . . 6
⊢ ([𝑎 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓) |
7 | 6 | sbbii 2079 |
. . . . 5
⊢ ([𝑢 / 𝑎][𝑎 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑢 / 𝑎][𝑣 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓) |
8 | | nfv 1917 |
. . . . . . 7
⊢
Ⅎ𝑎𝜓 |
9 | 8 | nfsbv 2324 |
. . . . . 6
⊢
Ⅎ𝑎[𝑣 / 𝑦]𝜓 |
10 | 9 | sbco2v 2327 |
. . . . 5
⊢ ([𝑢 / 𝑎][𝑎 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓) |
11 | | ichbi12i.1 |
. . . . . . 7
⊢ ((𝑥 = 𝑎 ∧ 𝑦 = 𝑏) → (𝜓 ↔ 𝜒)) |
12 | 11 | 2sbievw 2097 |
. . . . . 6
⊢ ([𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ 𝜒) |
13 | 12 | 2sbbii 2080 |
. . . . 5
⊢ ([𝑢 / 𝑎][𝑣 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑢 / 𝑎][𝑣 / 𝑏]𝜒) |
14 | 7, 10, 13 | 3bitr3i 301 |
. . . 4
⊢ ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑢 / 𝑎][𝑣 / 𝑏]𝜒) |
15 | | sbcom2 2161 |
. . . . . . 7
⊢ ([𝑢 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑢 / 𝑏][𝑏 / 𝑦]𝜓) |
16 | 1 | sbco2v 2327 |
. . . . . . . 8
⊢ ([𝑢 / 𝑏][𝑏 / 𝑦]𝜓 ↔ [𝑢 / 𝑦]𝜓) |
17 | 16 | sbbii 2079 |
. . . . . . 7
⊢ ([𝑎 / 𝑥][𝑢 / 𝑏][𝑏 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑢 / 𝑦]𝜓) |
18 | 15, 17 | bitri 274 |
. . . . . 6
⊢ ([𝑢 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑢 / 𝑦]𝜓) |
19 | 18 | sbbii 2079 |
. . . . 5
⊢ ([𝑣 / 𝑎][𝑢 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑣 / 𝑎][𝑎 / 𝑥][𝑢 / 𝑦]𝜓) |
20 | 12 | 2sbbii 2080 |
. . . . 5
⊢ ([𝑣 / 𝑎][𝑢 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒) |
21 | 8 | nfsbv 2324 |
. . . . . 6
⊢
Ⅎ𝑎[𝑢 / 𝑦]𝜓 |
22 | 21 | sbco2v 2327 |
. . . . 5
⊢ ([𝑣 / 𝑎][𝑎 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜓) |
23 | 19, 20, 22 | 3bitr3ri 302 |
. . . 4
⊢ ([𝑣 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒) |
24 | 14, 23 | bibi12i 340 |
. . 3
⊢ (([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜓) ↔ ([𝑢 / 𝑎][𝑣 / 𝑏]𝜒 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒)) |
25 | 24 | 2albii 1823 |
. 2
⊢
(∀𝑢∀𝑣([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜓) ↔ ∀𝑢∀𝑣([𝑢 / 𝑎][𝑣 / 𝑏]𝜒 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒)) |
26 | | dfich2 44910 |
. 2
⊢ ([𝑥⇄𝑦]𝜓 ↔ ∀𝑢∀𝑣([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜓)) |
27 | | dfich2 44910 |
. 2
⊢ ([𝑎⇄𝑏]𝜒 ↔ ∀𝑢∀𝑣([𝑢 / 𝑎][𝑣 / 𝑏]𝜒 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒)) |
28 | 25, 26, 27 | 3bitr4i 303 |
1
⊢ ([𝑥⇄𝑦]𝜓 ↔ [𝑎⇄𝑏]𝜒) |