Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ichbi12i Structured version   Visualization version   GIF version

Theorem ichbi12i 44912
Description: Equivalence for interchangeable setvar variables. (Contributed by AV, 29-Jul-2023.)
Hypothesis
Ref Expression
ichbi12i.1 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝜓𝜒))
Assertion
Ref Expression
ichbi12i ([𝑥𝑦]𝜓 ↔ [𝑎𝑏]𝜒)
Distinct variable groups:   𝑎,𝑏,𝜓   𝑥,𝑦,𝜒   𝑥,𝑎,𝑦,𝑏
Allowed substitution hints:   𝜓(𝑥,𝑦)   𝜒(𝑎,𝑏)

Proof of Theorem ichbi12i
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . . . . . . . 10 𝑏𝜓
21sbco2v 2327 . . . . . . . . 9 ([𝑣 / 𝑏][𝑏 / 𝑦]𝜓 ↔ [𝑣 / 𝑦]𝜓)
32bicomi 223 . . . . . . . 8 ([𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑏][𝑏 / 𝑦]𝜓)
43sbbii 2079 . . . . . . 7 ([𝑎 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑣 / 𝑏][𝑏 / 𝑦]𝜓)
5 sbcom2 2161 . . . . . . 7 ([𝑎 / 𝑥][𝑣 / 𝑏][𝑏 / 𝑦]𝜓 ↔ [𝑣 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓)
64, 5bitri 274 . . . . . 6 ([𝑎 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓)
76sbbii 2079 . . . . 5 ([𝑢 / 𝑎][𝑎 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑢 / 𝑎][𝑣 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓)
8 nfv 1917 . . . . . . 7 𝑎𝜓
98nfsbv 2324 . . . . . 6 𝑎[𝑣 / 𝑦]𝜓
109sbco2v 2327 . . . . 5 ([𝑢 / 𝑎][𝑎 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑢 / 𝑥][𝑣 / 𝑦]𝜓)
11 ichbi12i.1 . . . . . . 7 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝜓𝜒))
12112sbievw 2097 . . . . . 6 ([𝑎 / 𝑥][𝑏 / 𝑦]𝜓𝜒)
13122sbbii 2080 . . . . 5 ([𝑢 / 𝑎][𝑣 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑢 / 𝑎][𝑣 / 𝑏]𝜒)
147, 10, 133bitr3i 301 . . . 4 ([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑢 / 𝑎][𝑣 / 𝑏]𝜒)
15 sbcom2 2161 . . . . . . 7 ([𝑢 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑢 / 𝑏][𝑏 / 𝑦]𝜓)
161sbco2v 2327 . . . . . . . 8 ([𝑢 / 𝑏][𝑏 / 𝑦]𝜓 ↔ [𝑢 / 𝑦]𝜓)
1716sbbii 2079 . . . . . . 7 ([𝑎 / 𝑥][𝑢 / 𝑏][𝑏 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑢 / 𝑦]𝜓)
1815, 17bitri 274 . . . . . 6 ([𝑢 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑎 / 𝑥][𝑢 / 𝑦]𝜓)
1918sbbii 2079 . . . . 5 ([𝑣 / 𝑎][𝑢 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑣 / 𝑎][𝑎 / 𝑥][𝑢 / 𝑦]𝜓)
20122sbbii 2080 . . . . 5 ([𝑣 / 𝑎][𝑢 / 𝑏][𝑎 / 𝑥][𝑏 / 𝑦]𝜓 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒)
218nfsbv 2324 . . . . . 6 𝑎[𝑢 / 𝑦]𝜓
2221sbco2v 2327 . . . . 5 ([𝑣 / 𝑎][𝑎 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜓)
2319, 20, 223bitr3ri 302 . . . 4 ([𝑣 / 𝑥][𝑢 / 𝑦]𝜓 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒)
2414, 23bibi12i 340 . . 3 (([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜓) ↔ ([𝑢 / 𝑎][𝑣 / 𝑏]𝜒 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒))
25242albii 1823 . 2 (∀𝑢𝑣([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜓) ↔ ∀𝑢𝑣([𝑢 / 𝑎][𝑣 / 𝑏]𝜒 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒))
26 dfich2 44910 . 2 ([𝑥𝑦]𝜓 ↔ ∀𝑢𝑣([𝑢 / 𝑥][𝑣 / 𝑦]𝜓 ↔ [𝑣 / 𝑥][𝑢 / 𝑦]𝜓))
27 dfich2 44910 . 2 ([𝑎𝑏]𝜒 ↔ ∀𝑢𝑣([𝑢 / 𝑎][𝑣 / 𝑏]𝜒 ↔ [𝑣 / 𝑎][𝑢 / 𝑏]𝜒))
2825, 26, 273bitr4i 303 1 ([𝑥𝑦]𝜓 ↔ [𝑎𝑏]𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  [wsb 2067  [wich 44897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-ich 44898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator