|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbco4lemOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of sbco4lem 2101 as of 3-Sep-2025. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof shortened by Wolf Lammen, 12-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| sbco4lemOLD | ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcom2 2173 | . . 3 ⊢ ([𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | |
| 2 | 1 | sbbii 2076 | . 2 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑣 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | 
| 3 | sbco2vv 2099 | . . 3 ⊢ ([𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑) | |
| 4 | 3 | 2sbbii 2077 | . 2 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) | 
| 5 | sbco2vv 2099 | . 2 ⊢ ([𝑥 / 𝑣][𝑣 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | |
| 6 | 2, 4, 5 | 3bitr3i 301 | 1 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-11 2157 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |