Proof of Theorem sbco4lemOLD
Step | Hyp | Ref
| Expression |
1 | | sbcom2 2163 |
. . 3
⊢ ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑) |
2 | 1 | sbbii 2080 |
. 2
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑) |
3 | | sbco2vv 2102 |
. . . . 5
⊢ ([𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑) |
4 | 3 | sbbii 2080 |
. . . 4
⊢ ([𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
5 | 4 | 2sbbii 2081 |
. . 3
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
6 | | sbco2vv 2102 |
. . 3
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
7 | 5, 6 | bitri 274 |
. 2
⊢ ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑) |
8 | | sbid2vw 2254 |
. . 3
⊢ ([𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑) |
9 | 8 | 2sbbii 2081 |
. 2
⊢ ([𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
10 | 2, 7, 9 | 3bitr3i 300 |
1
⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |