MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco4lemOLD Structured version   Visualization version   GIF version

Theorem sbco4lemOLD 2277
Description: Obsolete version of sbco4lem 2276 as of 12-Oct-2024. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbco4lemOLD ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑤,𝑣,𝜑   𝑥,𝑣,𝑤   𝑦,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco4lemOLD
StepHypRef Expression
1 sbcom2 2163 . . 3 ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑)
21sbbii 2080 . 2 ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑)
3 sbco2vv 2102 . . . . 5 ([𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑)
43sbbii 2080 . . . 4 ([𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
542sbbii 2081 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
6 sbco2vv 2102 . . 3 ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
75, 6bitri 274 . 2 ([𝑥 / 𝑤][𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
8 sbid2vw 2254 . . 3 ([𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑)
982sbbii 2081 . 2 ([𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
102, 7, 93bitr3i 300 1 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-11 2156  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator