MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco4lemOLD Structured version   Visualization version   GIF version

Theorem sbco4lemOLD 2175
Description: Obsolete version of sbco4lem 2101 as of 3-Sep-2025. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof shortened by Wolf Lammen, 12-Oct-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbco4lemOLD ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑤,𝑣,𝜑   𝑥,𝑣,𝑤   𝑦,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco4lemOLD
StepHypRef Expression
1 sbcom2 2174 . . 3 ([𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
21sbbii 2076 . 2 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑣 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
3 sbco2vv 2099 . . 3 ([𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑣 / 𝑦]𝜑)
432sbbii 2077 . 2 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑)
5 sbco2vv 2099 . 2 ([𝑥 / 𝑣][𝑣 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
62, 4, 53bitr3i 301 1 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator