MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbco4lem Structured version   Visualization version   GIF version

Theorem sbco4lem 2104
Description: Lemma for sbco4 2105. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof shortened by Wolf Lammen, 12-Oct-2024.) Avoid ax-11 2160. (Revised by SN, 3-Sep-2025.)
Assertion
Ref Expression
sbco4lem ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Distinct variable groups:   𝑤,𝑣,𝜑   𝑥,𝑣,𝑤   𝑦,𝑣,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbco4lem
StepHypRef Expression
1 sbequ 2086 . . 3 (𝑣 = 𝑤 → ([𝑣 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑))
21sbbidv 2082 . 2 (𝑣 = 𝑤 → ([𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑦]𝜑))
32cbvsbv 2103 1 ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068
This theorem is referenced by:  sbco4  2105  sbco4OLD  2178
  Copyright terms: Public domain W3C validator