| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbco4lem | Structured version Visualization version GIF version | ||
| Description: Lemma for sbco4 2103. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.) (Proof shortened by Wolf Lammen, 12-Oct-2024.) Avoid ax-11 2158. (Revised by SN, 3-Sep-2025.) |
| Ref | Expression |
|---|---|
| sbco4lem | ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbequ 2084 | . . 3 ⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑦]𝜑 ↔ [𝑤 / 𝑦]𝜑)) | |
| 2 | 1 | sbbidv 2080 | . 2 ⊢ (𝑣 = 𝑤 → ([𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑦]𝜑)) |
| 3 | 2 | cbvsbv 2101 | 1 ⊢ ([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 |
| This theorem is referenced by: sbco4 2103 sbco4OLD 2176 |
| Copyright terms: Public domain | W3C validator |