Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > icheq | Structured version Visualization version GIF version |
Description: In an equality of setvar variables, the setvar variables are interchangeable. (Contributed by AV, 29-Jul-2023.) |
Ref | Expression |
---|---|
icheq | ⊢ [𝑥⇄𝑦]𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb3r 2104 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝑧) | |
2 | 1 | 2sbbii 2081 | . . . 4 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝑥 = 𝑦 ↔ [𝑥 / 𝑧][𝑦 / 𝑥]𝑥 = 𝑧) |
3 | equsb3 2103 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) | |
4 | 3 | sbbii 2080 | . . . 4 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥]𝑥 = 𝑧 ↔ [𝑥 / 𝑧]𝑦 = 𝑧) |
5 | equsb3r 2104 | . . . . 5 ⊢ ([𝑥 / 𝑧]𝑦 = 𝑧 ↔ 𝑦 = 𝑥) | |
6 | equcom 2022 | . . . . 5 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
7 | 5, 6 | bitri 274 | . . . 4 ⊢ ([𝑥 / 𝑧]𝑦 = 𝑧 ↔ 𝑥 = 𝑦) |
8 | 2, 4, 7 | 3bitri 296 | . . 3 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝑦) |
9 | 8 | gen2 1800 | . 2 ⊢ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝑦) |
10 | df-ich 44786 | . 2 ⊢ ([𝑥⇄𝑦]𝑥 = 𝑦 ↔ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
11 | 9, 10 | mpbir 230 | 1 ⊢ [𝑥⇄𝑦]𝑥 = 𝑦 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1537 [wsb 2068 [wich 44785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-ich 44786 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |