| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icheq | Structured version Visualization version GIF version | ||
| Description: In an equality of setvar variables, the setvar variables are interchangeable. (Contributed by AV, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| icheq | ⊢ [𝑥⇄𝑦]𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb3r 2104 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝑧) | |
| 2 | 1 | 2sbbii 2077 | . . . 4 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝑥 = 𝑦 ↔ [𝑥 / 𝑧][𝑦 / 𝑥]𝑥 = 𝑧) |
| 3 | equsb3 2103 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑧 ↔ 𝑦 = 𝑧) | |
| 4 | 3 | sbbii 2076 | . . . 4 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥]𝑥 = 𝑧 ↔ [𝑥 / 𝑧]𝑦 = 𝑧) |
| 5 | equsb3r 2104 | . . . . 5 ⊢ ([𝑥 / 𝑧]𝑦 = 𝑧 ↔ 𝑦 = 𝑥) | |
| 6 | equcom 2017 | . . . . 5 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 7 | 5, 6 | bitri 275 | . . . 4 ⊢ ([𝑥 / 𝑧]𝑦 = 𝑧 ↔ 𝑥 = 𝑦) |
| 8 | 2, 4, 7 | 3bitri 297 | . . 3 ⊢ ([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝑦) |
| 9 | 8 | gen2 1796 | . 2 ⊢ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝑦) |
| 10 | df-ich 47433 | . 2 ⊢ ([𝑥⇄𝑦]𝑥 = 𝑦 ↔ ∀𝑥∀𝑦([𝑥 / 𝑧][𝑦 / 𝑥][𝑧 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 11 | 9, 10 | mpbir 231 | 1 ⊢ [𝑥⇄𝑦]𝑥 = 𝑦 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wal 1538 [wsb 2064 [wich 47432 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-ich 47433 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |