MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2sbiev Structured version   Visualization version   GIF version

Theorem 2sbiev 2509
Description: Conversion of double implicit substitution to explicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. See 2sbievw 2099 for a version with extra disjoint variables, but based on fewer axioms. (Contributed by AV, 29-Jul-2023.) (New usage is discouraged.)
Hypothesis
Ref Expression
2sbiev.1 ((𝑥 = 𝑡𝑦 = 𝑢) → (𝜑𝜓))
Assertion
Ref Expression
2sbiev ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦,𝜓   𝑦,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑢,𝑡)   𝜓(𝑢,𝑡)

Proof of Theorem 2sbiev
StepHypRef Expression
1 nfv 1918 . 2 𝑥𝜓
2 2sbiev.1 . . 3 ((𝑥 = 𝑡𝑦 = 𝑢) → (𝜑𝜓))
32sbiedv 2508 . 2 (𝑥 = 𝑡 → ([𝑢 / 𝑦]𝜑𝜓))
41, 3sbie 2506 1 ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  [wsb 2068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1784  df-nf 1788  df-sb 2069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator