![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2sbiev | Structured version Visualization version GIF version |
Description: Conversion of double implicit substitution to explicit substitution. (Contributed by AV, 29-Jul-2023.) |
Ref | Expression |
---|---|
2sbiev.1 | ⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
2sbiev | ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1896 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | 2sbiev.1 | . . 3 ⊢ ((𝑥 = 𝑡 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbiedv 2502 | . 2 ⊢ (𝑥 = 𝑡 → ([𝑢 / 𝑦]𝜑 ↔ 𝜓)) |
4 | 1, 3 | sbie 2500 | 1 ⊢ ([𝑡 / 𝑥][𝑢 / 𝑦]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 [wsb 2044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-10 2114 ax-12 2143 ax-13 2346 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-ex 1766 df-nf 1770 df-sb 2045 |
This theorem is referenced by: ichbi12i 43122 |
Copyright terms: Public domain | W3C validator |