MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbiedv Structured version   Visualization version   GIF version

Theorem sbiedv 2508
Description: Conversion of implicit substitution to explicit substitution (deduction version of sbie 2506). Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker sbiedvw 2096 when possible. (Contributed by NM, 7-Jan-2017.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbiedv.1 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
sbiedv (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem sbiedv
StepHypRef Expression
1 nfv 1917 . 2 𝑥𝜑
2 nfvd 1918 . 2 (𝜑 → Ⅎ𝑥𝜒)
3 sbiedv.1 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
43ex 413 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
51, 2, 4sbied 2507 1 (𝜑 → ([𝑦 / 𝑥]𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by:  2sbiev  2509
  Copyright terms: Public domain W3C validator