| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2313 and sbievw 2094. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbie.1 | ⊢ Ⅎ𝑥𝜓 |
| sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb1 2489 | . . 3 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
| 2 | sbie.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbimi 2075 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥](𝜑 ↔ 𝜓) |
| 5 | sbie.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | sbf 2271 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 7 | 6 | sblbis 2308 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 8 | 4, 7 | mpbi 230 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 [wsb 2065 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-10 2142 ax-12 2178 ax-13 2370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-sb 2066 |
| This theorem is referenced by: sbied 2501 2sbiev 2503 cbvmo 2597 cbveu 2600 cbvab 2801 cbvralf 3325 cbvreu 3388 cbvrab 3437 nfcdeq 3739 cbvralcsf 3895 cbvreucsf 3897 cbvrabcsf 3898 cbvopab1g 5170 cbvmptfg 5196 cbviota 6451 cbvriota 7323 nd1 10500 nd2 10501 sbcrexgOLD 42778 |
| Copyright terms: Public domain | W3C validator |