MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbie Structured version   Visualization version   GIF version

Theorem sbie 2505
Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2313 and sbievw 2092. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbie.1 𝑥𝜓
sbie.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbie ([𝑦 / 𝑥]𝜑𝜓)

Proof of Theorem sbie
StepHypRef Expression
1 equsb1 2494 . . 3 [𝑦 / 𝑥]𝑥 = 𝑦
2 sbie.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32sbimi 2073 . . 3 ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑𝜓))
41, 3ax-mp 5 . 2 [𝑦 / 𝑥](𝜑𝜓)
5 sbie.1 . . . 4 𝑥𝜓
65sbf 2270 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
76sblbis 2308 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
84, 7mpbi 230 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1782  [wsb 2063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-10 2140  ax-12 2176  ax-13 2375
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783  df-sb 2064
This theorem is referenced by:  sbied  2506  2sbiev  2508  cbvmo  2602  cbveu  2605  cbvab  2806  clelsb2OLD  2862  cbvralf  3337  cbvreu  3405  cbvrab  3456  nfcdeq  3758  cbvralcsf  3914  cbvreucsf  3916  cbvrabcsf  3917  cbvopab1g  5192  cbvmptfg  5220  cbviota  6490  cbvriota  7370  nd1  10594  nd2  10595  sbcrexgOLD  42740
  Copyright terms: Public domain W3C validator