MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbie Structured version   Visualization version   GIF version

Theorem sbie 2508
Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2313 and sbievw 2099. Usage of this theorem is discouraged because it depends on ax-13 2374. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbie.1 𝑥𝜓
sbie.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbie ([𝑦 / 𝑥]𝜑𝜓)

Proof of Theorem sbie
StepHypRef Expression
1 equsb1 2497 . . 3 [𝑦 / 𝑥]𝑥 = 𝑦
2 sbie.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32sbimi 2081 . . 3 ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑𝜓))
41, 3ax-mp 5 . 2 [𝑦 / 𝑥](𝜑𝜓)
5 sbie.1 . . . 4 𝑥𝜓
65sbf 2267 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
76sblbis 2310 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
84, 7mpbi 229 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1790  [wsb 2071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-10 2141  ax-12 2175  ax-13 2374
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ex 1787  df-nf 1791  df-sb 2072
This theorem is referenced by:  sbied  2509  2sbiev  2511  cbvmo  2607  cbveu  2611  cbvab  2816  clelsb2OLD  2870  cbvralf  3370  cbvreu  3379  cbvrab  3424  nfcdeq  3716  cbvralcsf  3882  cbvreucsf  3884  cbvrabcsf  3885  cbvopab1g  5155  cbvmptfg  5189  cbviota  6400  cbvriota  7242  nd1  10344  nd2  10345  sbcrexgOLD  40604
  Copyright terms: Public domain W3C validator