![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2309 and sbievw 2096. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbie.1 | ⊢ Ⅎ𝑥𝜓 |
sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb1 2491 | . . 3 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
2 | sbie.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbimi 2078 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥](𝜑 ↔ 𝜓) |
5 | sbie.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | sbf 2263 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
7 | 6 | sblbis 2306 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
8 | 4, 7 | mpbi 229 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2138 ax-12 2172 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-sb 2069 |
This theorem is referenced by: sbied 2503 2sbiev 2505 cbvmo 2600 cbveu 2604 cbvab 2809 clelsb2OLD 2863 cbvralf 3357 cbvreu 3425 cbvrab 3474 nfcdeq 3774 cbvralcsf 3939 cbvreucsf 3941 cbvrabcsf 3942 cbvopab1g 5225 cbvmptfg 5259 cbviota 6506 cbvriota 7379 nd1 10582 nd2 10583 sbcrexgOLD 41523 |
Copyright terms: Public domain | W3C validator |