Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2312 and sbievw 2097. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbie.1 | ⊢ Ⅎ𝑥𝜓 |
sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb1 2495 | . . 3 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
2 | sbie.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbimi 2078 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥](𝜑 ↔ 𝜓) |
5 | sbie.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | sbf 2266 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
7 | 6 | sblbis 2309 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
8 | 4, 7 | mpbi 229 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 [wsb 2068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 |
This theorem is referenced by: sbied 2507 2sbiev 2509 cbvmo 2605 cbveu 2609 cbvab 2815 clelsb2 2867 cbvralf 3361 cbvreu 3370 cbvrab 3415 nfcdeq 3707 cbvralcsf 3873 cbvreucsf 3875 cbvrabcsf 3876 cbvopab1g 5146 cbvmptfg 5180 cbviota 6386 cbvriota 7226 nd1 10274 nd2 10275 sbcrexgOLD 40523 |
Copyright terms: Public domain | W3C validator |