![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2318 and sbievw 2093. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbie.1 | ⊢ Ⅎ𝑥𝜓 |
sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb1 2499 | . . 3 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
2 | sbie.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | sbimi 2074 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥](𝜑 ↔ 𝜓) |
5 | sbie.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | sbf 2272 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
7 | 6 | sblbis 2313 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
8 | 4, 7 | mpbi 230 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1781 [wsb 2064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2178 ax-13 2380 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 |
This theorem is referenced by: sbied 2511 2sbiev 2513 cbvmo 2607 cbveu 2610 cbvab 2817 clelsb2OLD 2873 cbvralf 3368 cbvreu 3435 cbvrab 3487 nfcdeq 3799 cbvralcsf 3966 cbvreucsf 3968 cbvrabcsf 3969 cbvopab1g 5242 cbvmptfg 5276 cbviota 6530 cbvriota 7413 nd1 10650 nd2 10651 sbcrexgOLD 42733 |
Copyright terms: Public domain | W3C validator |