| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2313 and sbievw 2092. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbie.1 | ⊢ Ⅎ𝑥𝜓 |
| sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb1 2494 | . . 3 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
| 2 | sbie.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbimi 2073 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥](𝜑 ↔ 𝜓) |
| 5 | sbie.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | sbf 2270 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 7 | 6 | sblbis 2308 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 8 | 4, 7 | mpbi 230 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1782 [wsb 2063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 |
| This theorem is referenced by: sbied 2506 2sbiev 2508 cbvmo 2602 cbveu 2605 cbvab 2806 clelsb2OLD 2862 cbvralf 3337 cbvreu 3405 cbvrab 3456 nfcdeq 3758 cbvralcsf 3914 cbvreucsf 3916 cbvrabcsf 3917 cbvopab1g 5192 cbvmptfg 5220 cbviota 6490 cbvriota 7370 nd1 10594 nd2 10595 sbcrexgOLD 42740 |
| Copyright terms: Public domain | W3C validator |