Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbie Structured version   Visualization version   GIF version

Theorem sbie 2546
 Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2332 and sbievw 2104. Usage of this theorem is discouraged because it depends on ax-13 2392. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbie.1 𝑥𝜓
sbie.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbie ([𝑦 / 𝑥]𝜑𝜓)

Proof of Theorem sbie
StepHypRef Expression
1 equsb1 2532 . . 3 [𝑦 / 𝑥]𝑥 = 𝑦
2 sbie.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32sbimi 2080 . . 3 ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑𝜓))
41, 3ax-mp 5 . 2 [𝑦 / 𝑥](𝜑𝜓)
5 sbie.1 . . . 4 𝑥𝜓
65sbf 2273 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
76sblbis 2321 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
84, 7mpbi 233 1 ([𝑦 / 𝑥]𝜑𝜓)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  Ⅎwnf 1785  [wsb 2070 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-10 2146  ax-12 2179  ax-13 2392 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ex 1782  df-nf 1786  df-sb 2071 This theorem is referenced by:  sbied  2547  2sbiev  2549  cbvmo  2691  cbveu  2694  cbvab  2895  cbvralf  3423  cbvreu  3432  cbvrab  3476  nfcdeq  3754  cbvralcsf  3908  cbvreucsf  3910  cbvrabcsf  3911  cbvopab1g  5126  cbvmptfg  5152  cbviota  6311  cbvriota  7120  nd1  10007  nd2  10008  sbcrexgOLD  39642
 Copyright terms: Public domain W3C validator