| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2315 and sbievw 2096. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbie.1 | ⊢ Ⅎ𝑥𝜓 |
| sbie.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbie | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb1 2491 | . . 3 ⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | |
| 2 | sbie.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | sbimi 2077 | . . 3 ⊢ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥](𝜑 ↔ 𝜓) |
| 5 | sbie.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | sbf 2273 | . . 3 ⊢ ([𝑦 / 𝑥]𝜓 ↔ 𝜓) |
| 7 | 6 | sblbis 2310 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ 𝜓)) |
| 8 | 4, 7 | mpbi 230 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: sbied 2503 2sbiev 2505 cbvmo 2599 cbveu 2602 cbvab 2803 cbvralf 3326 cbvreu 3387 cbvrab 3435 nfcdeq 3731 cbvralcsf 3887 cbvreucsf 3889 cbvrabcsf 3890 cbvopab1g 5164 cbvmptfg 5190 cbviota 6446 cbvriota 7316 nd1 10478 nd2 10479 sbcrexgOLD 42826 |
| Copyright terms: Public domain | W3C validator |