MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbie Structured version   Visualization version   GIF version

Theorem sbie 2500
Description: Conversion of implicit substitution to explicit substitution. For versions requiring disjoint variables, but fewer axioms, see sbiev 2313 and sbievw 2094. Usage of this theorem is discouraged because it depends on ax-13 2370. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 13-Jul-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
sbie.1 𝑥𝜓
sbie.2 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
sbie ([𝑦 / 𝑥]𝜑𝜓)

Proof of Theorem sbie
StepHypRef Expression
1 equsb1 2489 . . 3 [𝑦 / 𝑥]𝑥 = 𝑦
2 sbie.2 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
32sbimi 2075 . . 3 ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥](𝜑𝜓))
41, 3ax-mp 5 . 2 [𝑦 / 𝑥](𝜑𝜓)
5 sbie.1 . . . 4 𝑥𝜓
65sbf 2271 . . 3 ([𝑦 / 𝑥]𝜓𝜓)
76sblbis 2308 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓))
84, 7mpbi 230 1 ([𝑦 / 𝑥]𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1783  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-10 2142  ax-12 2178  ax-13 2370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784  df-sb 2066
This theorem is referenced by:  sbied  2501  2sbiev  2503  cbvmo  2597  cbveu  2600  cbvab  2801  cbvralf  3334  cbvreu  3397  cbvrab  3446  nfcdeq  3748  cbvralcsf  3904  cbvreucsf  3906  cbvrabcsf  3907  cbvopab1g  5182  cbvmptfg  5208  cbviota  6473  cbvriota  7357  nd1  10540  nd2  10541  sbcrexgOLD  42773
  Copyright terms: Public domain W3C validator