| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcom3 | Structured version Visualization version GIF version | ||
| Description: Substituting 𝑦 for 𝑥 and then 𝑧 for 𝑦 is equivalent to substituting 𝑧 for both 𝑥 and 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2372. For a version requiring a disjoint variable, but fewer axioms, see sbcom3vv 2100. (Contributed by Giovanni Mascellani, 8-Apr-2018.) Remove dependency on ax-11 2160. (Revised by Wolf Lammen, 16-Sep-2018.) (Proof shortened by Wolf Lammen, 16-Sep-2018.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sbcom3 | ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 2154 | . . 3 ⊢ Ⅎ𝑦∀𝑦 𝑦 = 𝑧 | |
| 2 | drsb2 2269 | . . 3 ⊢ (∀𝑦 𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 3 | 1, 2 | sbbid 2249 | . 2 ⊢ (∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)) |
| 4 | sb4b 2475 | . . . 4 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑))) | |
| 5 | sbequ 2086 | . . . . . 6 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 6 | 5 | pm5.74i 271 | . . . . 5 ⊢ ((𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
| 7 | 6 | albii 1820 | . . . 4 ⊢ (∀𝑦(𝑦 = 𝑧 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) |
| 8 | 4, 7 | bitrdi 287 | . . 3 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑))) |
| 9 | sb4b 2475 | . . 3 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑧 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑))) | |
| 10 | 8, 9 | bitr4d 282 | . 2 ⊢ (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)) |
| 11 | 3, 10 | pm2.61i 182 | 1 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 [wsb 2067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-10 2144 ax-12 2180 ax-13 2372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-sb 2068 |
| This theorem is referenced by: sbco 2507 sbidm 2510 sbcom 2514 |
| Copyright terms: Public domain | W3C validator |