Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnf2 Structured version   Visualization version   GIF version

Theorem cantnf2 43302
Description: For every ordinal, 𝐴, there is a an ordinal exponent 𝑏 such that 𝐴 is less than (ω ↑o 𝑏) and for every ordinal at least as large as 𝑏 there is a unique Cantor normal form, 𝑓, with zeros for all the unnecessary higher terms, that sums to 𝐴. Theorem 5.3 of [Schloeder] p. 16. (Contributed by RP, 3-Feb-2025.)
Assertion
Ref Expression
cantnf2 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Distinct variable group:   𝐴,𝑏,𝑐,𝑓

Proof of Theorem cantnf2
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onexoegt 43221 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏))
2 eldif 3913 . . . . . . 7 (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏))
3 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → 𝑏 ∈ On)
4 pm3.2 469 . . . . . . . . . 10 (𝑏 ∈ On → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
53, 4syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
6 ontri1 6341 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑏𝑐 ↔ ¬ 𝑐𝑏))
75, 6syl6 35 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏𝑐 ↔ ¬ 𝑐𝑏)))
87pm5.32d 577 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏)))
92, 8bitr4id 290 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ 𝑏𝑐)))
10 simplr 768 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑎 = 𝐴)
1110breq2d 5104 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎𝑓(ω CNF 𝑐)𝐴))
12 eqid 2729 . . . . . . . . . . . . . 14 dom (ω CNF 𝑐) = dom (ω CNF 𝑐)
13 omelon 9542 . . . . . . . . . . . . . . 15 ω ∈ On
1413a1i 11 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → ω ∈ On)
15 simprl 770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑐 ∈ On)
1615ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
1712, 14, 16cantnff1o 9592 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
18 f1ofun 6766 . . . . . . . . . . . . 13 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
1917, 18syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → Fun (ω CNF 𝑐))
20 funbrfvb 6876 . . . . . . . . . . . 12 ((Fun (ω CNF 𝑐) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2119, 20sylancom 588 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2211, 21bitr4d 282 . . . . . . . . . 10 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎 ↔ ((ω CNF 𝑐)‘𝑓) = 𝐴))
2322reubidva 3359 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) → (∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴))
24 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏 ∈ On)
2513a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ω ∈ On)
2624, 15, 253jca 1128 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On))
27 peano1 7822 . . . . . . . . . . . . 13 ∅ ∈ ω
2826, 27jctir 520 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω))
29 simprr 772 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏𝑐)
30 oewordi 8509 . . . . . . . . . . . 12 (((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) → (𝑏𝑐 → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐)))
3128, 29, 30sylc 65 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐))
32 simpl3 1194 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑏))
3331, 32sseldd 3936 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑐))
3412, 25, 15cantnff1o 9592 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
35 dff1o5 6773 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
36 simpr 484 . . . . . . . . . . . 12 (((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3735, 36sylbi 217 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3834, 37syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3933, 38eleqtrrd 2831 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ ran (ω CNF 𝑐))
40 dff1o2 6769 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
41 simp2 1137 . . . . . . . . . . . 12 (((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → Fun (ω CNF 𝑐))
4240, 41sylbi 217 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
4334, 42syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → Fun (ω CNF 𝑐))
44 funcnv3 6552 . . . . . . . . . 10 (Fun (ω CNF 𝑐) ↔ ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4543, 44sylib 218 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4623, 39, 45rspcdv2 3572 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴)
4732ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝐴 ∈ (ω ↑o 𝑏))
48 simplr 768 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 ∈ dom (ω CNF 𝑐))
4913a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ On)
5015ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑐 ∈ On)
5112, 49, 50cantnfs 9562 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
5248, 51mpbid 232 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
53 simpr 484 . . . . . . . . . . . . . 14 ((𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅) → 𝑓 finSupp ∅)
5452, 53syl 17 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 finSupp ∅)
55 eqid 2729 . . . . . . . . . . . . . . . 16 dom (ω CNF 𝑏) = dom (ω CNF 𝑏)
5624ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏 ∈ On)
5729ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏𝑐)
58 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = 𝐴)
5958, 47eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏))
60 1onn 8558 . . . . . . . . . . . . . . . . . . . . 21 1o ∈ ω
61 ondif2 8420 . . . . . . . . . . . . . . . . . . . . 21 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
6213, 60, 61mpbir2an 711 . . . . . . . . . . . . . . . . . . . 20 ω ∈ (On ∖ 2o)
6362a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ (On ∖ 2o))
64 cantnfresb 43301 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ (On ∖ 2o) ∧ 𝑐 ∈ On) ∧ (𝑏 ∈ On ∧ 𝑓 ∈ dom (ω CNF 𝑐))) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6563, 50, 56, 48, 64syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6659, 65mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅)
6766r19.21bi 3221 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑 ∈ (𝑐𝑏)) → (𝑓𝑑) = ∅)
6827a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∅ ∈ ω)
69 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓 ∈ dom (ω CNF 𝑐))
7013a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → ω ∈ On)
7115adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
7271ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑐 ∈ On)
7312, 70, 72cantnfs 9562 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
7469, 73mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
7574simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓:𝑐⟶ω)
7657sselda 3935 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑑𝑐)
7775, 76ffvelcdmd 7019 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓𝑑) ∈ ω)
7877fmpttd 7049 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω)
7912, 25, 15cantnfs 9562 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
8079simprbda 498 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑓:𝑐⟶ω)
8180adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓:𝑐⟶ω)
8281, 57feqresmpt 6892 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) = (𝑑𝑏 ↦ (𝑓𝑑)))
8354, 68fsuppres 9283 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) finSupp ∅)
8482, 83eqbrtrrd 5116 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)
8555, 49, 56cantnfs 9562 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏) ↔ ((𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω ∧ (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)))
8678, 84, 85mpbir2and 713 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏))
8755, 49, 56, 50, 57, 67, 68, 12, 86cantnfres 9573 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
8882fveq2d 6826 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))))
8981feqmptd 6891 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 = (𝑑𝑐 ↦ (𝑓𝑑)))
9089fveq2d 6826 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
9187, 88, 903eqtr4d 2774 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑐)‘𝑓))
9291, 58eqtrd 2764 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)
9347, 54, 923jca 1128 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴))
9493ex 412 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)))
9594pm4.71rd 562 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
96 3an4anass 1104 . . . . . . . . . 10 (((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
9795, 96bitrdi 287 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9897reubidva 3359 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9946, 98mpbid 232 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
10099ex 412 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1019, 100sylbid 240 . . . . 5 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
102101ralrimiv 3120 . . . 4 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
1031023exp 1119 . . 3 (𝐴 ∈ On → (𝑏 ∈ On → (𝐴 ∈ (ω ↑o 𝑏) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))))
104103reximdvai 3140 . 2 (𝐴 ∈ On → (∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏) → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1051, 104mpd 15 1 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3341  cdif 3900  wss 3903  c0 4284   class class class wbr 5092  cmpt 5173  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  wf 6478  1-1wf1 6479  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  ωcom 7799  1oc1o 8381  2oc2o 8382  o coe 8387   finSupp cfsupp 9251   CNF ccnf 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-seqom 8370  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-oexp 8394  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-cnf 9558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator