Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnf2 Structured version   Visualization version   GIF version

Theorem cantnf2 43321
Description: For every ordinal, 𝐴, there is a an ordinal exponent 𝑏 such that 𝐴 is less than (ω ↑o 𝑏) and for every ordinal at least as large as 𝑏 there is a unique Cantor normal form, 𝑓, with zeros for all the unnecessary higher terms, that sums to 𝐴. Theorem 5.3 of [Schloeder] p. 16. (Contributed by RP, 3-Feb-2025.)
Assertion
Ref Expression
cantnf2 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Distinct variable group:   𝐴,𝑏,𝑐,𝑓

Proof of Theorem cantnf2
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onexoegt 43240 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏))
2 eldif 3927 . . . . . . 7 (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏))
3 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → 𝑏 ∈ On)
4 pm3.2 469 . . . . . . . . . 10 (𝑏 ∈ On → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
53, 4syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
6 ontri1 6369 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑏𝑐 ↔ ¬ 𝑐𝑏))
75, 6syl6 35 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏𝑐 ↔ ¬ 𝑐𝑏)))
87pm5.32d 577 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏)))
92, 8bitr4id 290 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ 𝑏𝑐)))
10 simplr 768 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑎 = 𝐴)
1110breq2d 5122 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎𝑓(ω CNF 𝑐)𝐴))
12 eqid 2730 . . . . . . . . . . . . . 14 dom (ω CNF 𝑐) = dom (ω CNF 𝑐)
13 omelon 9606 . . . . . . . . . . . . . . 15 ω ∈ On
1413a1i 11 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → ω ∈ On)
15 simprl 770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑐 ∈ On)
1615ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
1712, 14, 16cantnff1o 9656 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
18 f1ofun 6805 . . . . . . . . . . . . 13 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
1917, 18syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → Fun (ω CNF 𝑐))
20 funbrfvb 6917 . . . . . . . . . . . 12 ((Fun (ω CNF 𝑐) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2119, 20sylancom 588 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2211, 21bitr4d 282 . . . . . . . . . 10 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎 ↔ ((ω CNF 𝑐)‘𝑓) = 𝐴))
2322reubidva 3372 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) → (∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴))
24 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏 ∈ On)
2513a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ω ∈ On)
2624, 15, 253jca 1128 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On))
27 peano1 7868 . . . . . . . . . . . . 13 ∅ ∈ ω
2826, 27jctir 520 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω))
29 simprr 772 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏𝑐)
30 oewordi 8558 . . . . . . . . . . . 12 (((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) → (𝑏𝑐 → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐)))
3128, 29, 30sylc 65 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐))
32 simpl3 1194 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑏))
3331, 32sseldd 3950 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑐))
3412, 25, 15cantnff1o 9656 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
35 dff1o5 6812 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
36 simpr 484 . . . . . . . . . . . 12 (((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3735, 36sylbi 217 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3834, 37syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3933, 38eleqtrrd 2832 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ ran (ω CNF 𝑐))
40 dff1o2 6808 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
41 simp2 1137 . . . . . . . . . . . 12 (((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → Fun (ω CNF 𝑐))
4240, 41sylbi 217 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
4334, 42syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → Fun (ω CNF 𝑐))
44 funcnv3 6589 . . . . . . . . . 10 (Fun (ω CNF 𝑐) ↔ ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4543, 44sylib 218 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4623, 39, 45rspcdv2 3586 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴)
4732ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝐴 ∈ (ω ↑o 𝑏))
48 simplr 768 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 ∈ dom (ω CNF 𝑐))
4913a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ On)
5015ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑐 ∈ On)
5112, 49, 50cantnfs 9626 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
5248, 51mpbid 232 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
53 simpr 484 . . . . . . . . . . . . . 14 ((𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅) → 𝑓 finSupp ∅)
5452, 53syl 17 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 finSupp ∅)
55 eqid 2730 . . . . . . . . . . . . . . . 16 dom (ω CNF 𝑏) = dom (ω CNF 𝑏)
5624ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏 ∈ On)
5729ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏𝑐)
58 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = 𝐴)
5958, 47eqeltrd 2829 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏))
60 1onn 8607 . . . . . . . . . . . . . . . . . . . . 21 1o ∈ ω
61 ondif2 8469 . . . . . . . . . . . . . . . . . . . . 21 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
6213, 60, 61mpbir2an 711 . . . . . . . . . . . . . . . . . . . 20 ω ∈ (On ∖ 2o)
6362a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ (On ∖ 2o))
64 cantnfresb 43320 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ (On ∖ 2o) ∧ 𝑐 ∈ On) ∧ (𝑏 ∈ On ∧ 𝑓 ∈ dom (ω CNF 𝑐))) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6563, 50, 56, 48, 64syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6659, 65mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅)
6766r19.21bi 3230 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑 ∈ (𝑐𝑏)) → (𝑓𝑑) = ∅)
6827a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∅ ∈ ω)
69 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓 ∈ dom (ω CNF 𝑐))
7013a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → ω ∈ On)
7115adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
7271ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑐 ∈ On)
7312, 70, 72cantnfs 9626 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
7469, 73mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
7574simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓:𝑐⟶ω)
7657sselda 3949 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑑𝑐)
7775, 76ffvelcdmd 7060 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓𝑑) ∈ ω)
7877fmpttd 7090 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω)
7912, 25, 15cantnfs 9626 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
8079simprbda 498 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑓:𝑐⟶ω)
8180adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓:𝑐⟶ω)
8281, 57feqresmpt 6933 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) = (𝑑𝑏 ↦ (𝑓𝑑)))
8354, 68fsuppres 9351 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) finSupp ∅)
8482, 83eqbrtrrd 5134 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)
8555, 49, 56cantnfs 9626 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏) ↔ ((𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω ∧ (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)))
8678, 84, 85mpbir2and 713 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏))
8755, 49, 56, 50, 57, 67, 68, 12, 86cantnfres 9637 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
8882fveq2d 6865 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))))
8981feqmptd 6932 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 = (𝑑𝑐 ↦ (𝑓𝑑)))
9089fveq2d 6865 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
9187, 88, 903eqtr4d 2775 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑐)‘𝑓))
9291, 58eqtrd 2765 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)
9347, 54, 923jca 1128 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴))
9493ex 412 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)))
9594pm4.71rd 562 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
96 3an4anass 1104 . . . . . . . . . 10 (((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
9795, 96bitrdi 287 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9897reubidva 3372 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9946, 98mpbid 232 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
10099ex 412 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1019, 100sylbid 240 . . . . 5 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
102101ralrimiv 3125 . . . 4 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
1031023exp 1119 . . 3 (𝐴 ∈ On → (𝑏 ∈ On → (𝐴 ∈ (ω ↑o 𝑏) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))))
104103reximdvai 3145 . 2 (𝐴 ∈ On → (∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏) → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1051, 104mpd 15 1 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  cdif 3914  wss 3917  c0 4299   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845  1oc1o 8430  2oc2o 8431  o coe 8436   finSupp cfsupp 9319   CNF ccnf 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-cnf 9622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator