Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnf2 Structured version   Visualization version   GIF version

Theorem cantnf2 41846
Description: For every ordinal, 𝐴, there is a an ordinal exponent 𝑏 such that 𝐴 is less than (ω ↑o 𝑏) and for every ordinal at least as large as 𝑏 there is a unique Cantor normal form, 𝑓, with zeros for all the unnecessary higher terms, that sums to 𝐴. Theorem 5.3 of [Schloeder] p. 16. (Contributed by RP, 3-Feb-2025.)
Assertion
Ref Expression
cantnf2 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Distinct variable group:   𝐴,𝑏,𝑐,𝑓

Proof of Theorem cantnf2
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onexoegt 41764 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏))
2 eldif 3954 . . . . . . 7 (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏))
3 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → 𝑏 ∈ On)
4 pm3.2 470 . . . . . . . . . 10 (𝑏 ∈ On → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
53, 4syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
6 ontri1 6387 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑏𝑐 ↔ ¬ 𝑐𝑏))
75, 6syl6 35 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏𝑐 ↔ ¬ 𝑐𝑏)))
87pm5.32d 577 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏)))
92, 8bitr4id 289 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ 𝑏𝑐)))
10 simplr 767 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑎 = 𝐴)
1110breq2d 5153 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎𝑓(ω CNF 𝑐)𝐴))
12 eqid 2731 . . . . . . . . . . . . . 14 dom (ω CNF 𝑐) = dom (ω CNF 𝑐)
13 omelon 9623 . . . . . . . . . . . . . . 15 ω ∈ On
1413a1i 11 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → ω ∈ On)
15 simprl 769 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑐 ∈ On)
1615ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
1712, 14, 16cantnff1o 9673 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
18 f1ofun 6822 . . . . . . . . . . . . 13 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
1917, 18syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → Fun (ω CNF 𝑐))
20 funbrfvb 6933 . . . . . . . . . . . 12 ((Fun (ω CNF 𝑐) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2119, 20sylancom 588 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2211, 21bitr4d 281 . . . . . . . . . 10 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎 ↔ ((ω CNF 𝑐)‘𝑓) = 𝐴))
2322reubidva 3391 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) → (∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴))
24 simpl2 1192 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏 ∈ On)
2513a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ω ∈ On)
2624, 15, 253jca 1128 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On))
27 peano1 7861 . . . . . . . . . . . . 13 ∅ ∈ ω
2826, 27jctir 521 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω))
29 simprr 771 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏𝑐)
30 oewordi 8574 . . . . . . . . . . . 12 (((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) → (𝑏𝑐 → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐)))
3128, 29, 30sylc 65 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐))
32 simpl3 1193 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑏))
3331, 32sseldd 3979 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑐))
3412, 25, 15cantnff1o 9673 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
35 dff1o5 6829 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
36 simpr 485 . . . . . . . . . . . 12 (((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3735, 36sylbi 216 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3834, 37syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3933, 38eleqtrrd 2835 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ ran (ω CNF 𝑐))
40 dff1o2 6825 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
41 simp2 1137 . . . . . . . . . . . 12 (((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → Fun (ω CNF 𝑐))
4240, 41sylbi 216 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
4334, 42syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → Fun (ω CNF 𝑐))
44 funcnv3 6607 . . . . . . . . . 10 (Fun (ω CNF 𝑐) ↔ ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4543, 44sylib 217 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4623, 39, 45rspcdv2 3604 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴)
4732ad2antrr 724 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝐴 ∈ (ω ↑o 𝑏))
48 simplr 767 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 ∈ dom (ω CNF 𝑐))
4913a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ On)
5015ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑐 ∈ On)
5112, 49, 50cantnfs 9643 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
5248, 51mpbid 231 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
53 simpr 485 . . . . . . . . . . . . . 14 ((𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅) → 𝑓 finSupp ∅)
5452, 53syl 17 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 finSupp ∅)
55 eqid 2731 . . . . . . . . . . . . . . . 16 dom (ω CNF 𝑏) = dom (ω CNF 𝑏)
5624ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏 ∈ On)
5729ad2antrr 724 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏𝑐)
58 simpr 485 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = 𝐴)
5958, 47eqeltrd 2832 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏))
60 1onn 8622 . . . . . . . . . . . . . . . . . . . . 21 1o ∈ ω
61 ondif2 8484 . . . . . . . . . . . . . . . . . . . . 21 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
6213, 60, 61mpbir2an 709 . . . . . . . . . . . . . . . . . . . 20 ω ∈ (On ∖ 2o)
6362a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ (On ∖ 2o))
64 cantnfresb 41845 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ (On ∖ 2o) ∧ 𝑐 ∈ On) ∧ (𝑏 ∈ On ∧ 𝑓 ∈ dom (ω CNF 𝑐))) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6563, 50, 56, 48, 64syl22anc 837 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6659, 65mpbid 231 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅)
6766r19.21bi 3247 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑 ∈ (𝑐𝑏)) → (𝑓𝑑) = ∅)
6827a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∅ ∈ ω)
69 simpllr 774 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓 ∈ dom (ω CNF 𝑐))
7013a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → ω ∈ On)
7115adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
7271ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑐 ∈ On)
7312, 70, 72cantnfs 9643 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
7469, 73mpbid 231 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
7574simpld 495 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓:𝑐⟶ω)
7657sselda 3978 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑑𝑐)
7775, 76ffvelcdmd 7072 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓𝑑) ∈ ω)
7877fmpttd 7099 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω)
7912, 25, 15cantnfs 9643 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
8079simprbda 499 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑓:𝑐⟶ω)
8180adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓:𝑐⟶ω)
8281, 57feqresmpt 6947 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) = (𝑑𝑏 ↦ (𝑓𝑑)))
8354, 68fsuppres 9371 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) finSupp ∅)
8482, 83eqbrtrrd 5165 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)
8555, 49, 56cantnfs 9643 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏) ↔ ((𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω ∧ (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)))
8678, 84, 85mpbir2and 711 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏))
8755, 49, 56, 50, 57, 67, 68, 12, 86cantnfres 9654 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
8882fveq2d 6882 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))))
8981feqmptd 6946 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 = (𝑑𝑐 ↦ (𝑓𝑑)))
9089fveq2d 6882 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
9187, 88, 903eqtr4d 2781 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑐)‘𝑓))
9291, 58eqtrd 2771 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)
9347, 54, 923jca 1128 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴))
9493ex 413 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)))
9594pm4.71rd 563 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
96 3an4anass 1105 . . . . . . . . . 10 (((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
9795, 96bitrdi 286 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9897reubidva 3391 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9946, 98mpbid 231 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
10099ex 413 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1019, 100sylbid 239 . . . . 5 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
102101ralrimiv 3144 . . . 4 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
1031023exp 1119 . . 3 (𝐴 ∈ On → (𝑏 ∈ On → (𝐴 ∈ (ω ↑o 𝑏) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))))
104103reximdvai 3164 . 2 (𝐴 ∈ On → (∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏) → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1051, 104mpd 15 1 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  wrex 3069  ∃!wreu 3373  cdif 3941  wss 3944  c0 4318   class class class wbr 5141  cmpt 5224  ccnv 5668  dom cdm 5669  ran crn 5670  cres 5671  Oncon0 6353  Fun wfun 6526   Fn wfn 6527  wf 6528  1-1wf1 6529  1-1-ontowf1o 6531  cfv 6532  (class class class)co 7393  ωcom 7838  1oc1o 8441  2oc2o 8442  o coe 8447   finSupp cfsupp 9344   CNF ccnf 9638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-ot 4631  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-seqom 8430  df-1o 8448  df-2o 8449  df-oadd 8452  df-omul 8453  df-oexp 8454  df-er 8686  df-map 8805  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-oi 9487  df-cnf 9639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator