Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnf2 Structured version   Visualization version   GIF version

Theorem cantnf2 43314
Description: For every ordinal, 𝐴, there is a an ordinal exponent 𝑏 such that 𝐴 is less than (ω ↑o 𝑏) and for every ordinal at least as large as 𝑏 there is a unique Cantor normal form, 𝑓, with zeros for all the unnecessary higher terms, that sums to 𝐴. Theorem 5.3 of [Schloeder] p. 16. (Contributed by RP, 3-Feb-2025.)
Assertion
Ref Expression
cantnf2 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Distinct variable group:   𝐴,𝑏,𝑐,𝑓

Proof of Theorem cantnf2
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onexoegt 43233 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏))
2 eldif 3924 . . . . . . 7 (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏))
3 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → 𝑏 ∈ On)
4 pm3.2 469 . . . . . . . . . 10 (𝑏 ∈ On → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
53, 4syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
6 ontri1 6366 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑏𝑐 ↔ ¬ 𝑐𝑏))
75, 6syl6 35 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏𝑐 ↔ ¬ 𝑐𝑏)))
87pm5.32d 577 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏)))
92, 8bitr4id 290 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ 𝑏𝑐)))
10 simplr 768 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑎 = 𝐴)
1110breq2d 5119 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎𝑓(ω CNF 𝑐)𝐴))
12 eqid 2729 . . . . . . . . . . . . . 14 dom (ω CNF 𝑐) = dom (ω CNF 𝑐)
13 omelon 9599 . . . . . . . . . . . . . . 15 ω ∈ On
1413a1i 11 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → ω ∈ On)
15 simprl 770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑐 ∈ On)
1615ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
1712, 14, 16cantnff1o 9649 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
18 f1ofun 6802 . . . . . . . . . . . . 13 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
1917, 18syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → Fun (ω CNF 𝑐))
20 funbrfvb 6914 . . . . . . . . . . . 12 ((Fun (ω CNF 𝑐) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2119, 20sylancom 588 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2211, 21bitr4d 282 . . . . . . . . . 10 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎 ↔ ((ω CNF 𝑐)‘𝑓) = 𝐴))
2322reubidva 3370 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) → (∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴))
24 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏 ∈ On)
2513a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ω ∈ On)
2624, 15, 253jca 1128 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On))
27 peano1 7865 . . . . . . . . . . . . 13 ∅ ∈ ω
2826, 27jctir 520 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω))
29 simprr 772 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏𝑐)
30 oewordi 8555 . . . . . . . . . . . 12 (((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) → (𝑏𝑐 → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐)))
3128, 29, 30sylc 65 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐))
32 simpl3 1194 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑏))
3331, 32sseldd 3947 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑐))
3412, 25, 15cantnff1o 9649 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
35 dff1o5 6809 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
36 simpr 484 . . . . . . . . . . . 12 (((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3735, 36sylbi 217 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3834, 37syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3933, 38eleqtrrd 2831 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ ran (ω CNF 𝑐))
40 dff1o2 6805 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
41 simp2 1137 . . . . . . . . . . . 12 (((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → Fun (ω CNF 𝑐))
4240, 41sylbi 217 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
4334, 42syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → Fun (ω CNF 𝑐))
44 funcnv3 6586 . . . . . . . . . 10 (Fun (ω CNF 𝑐) ↔ ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4543, 44sylib 218 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4623, 39, 45rspcdv2 3583 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴)
4732ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝐴 ∈ (ω ↑o 𝑏))
48 simplr 768 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 ∈ dom (ω CNF 𝑐))
4913a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ On)
5015ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑐 ∈ On)
5112, 49, 50cantnfs 9619 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
5248, 51mpbid 232 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
53 simpr 484 . . . . . . . . . . . . . 14 ((𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅) → 𝑓 finSupp ∅)
5452, 53syl 17 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 finSupp ∅)
55 eqid 2729 . . . . . . . . . . . . . . . 16 dom (ω CNF 𝑏) = dom (ω CNF 𝑏)
5624ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏 ∈ On)
5729ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏𝑐)
58 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = 𝐴)
5958, 47eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏))
60 1onn 8604 . . . . . . . . . . . . . . . . . . . . 21 1o ∈ ω
61 ondif2 8466 . . . . . . . . . . . . . . . . . . . . 21 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
6213, 60, 61mpbir2an 711 . . . . . . . . . . . . . . . . . . . 20 ω ∈ (On ∖ 2o)
6362a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ (On ∖ 2o))
64 cantnfresb 43313 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ (On ∖ 2o) ∧ 𝑐 ∈ On) ∧ (𝑏 ∈ On ∧ 𝑓 ∈ dom (ω CNF 𝑐))) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6563, 50, 56, 48, 64syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6659, 65mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅)
6766r19.21bi 3229 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑 ∈ (𝑐𝑏)) → (𝑓𝑑) = ∅)
6827a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∅ ∈ ω)
69 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓 ∈ dom (ω CNF 𝑐))
7013a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → ω ∈ On)
7115adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
7271ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑐 ∈ On)
7312, 70, 72cantnfs 9619 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
7469, 73mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
7574simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓:𝑐⟶ω)
7657sselda 3946 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑑𝑐)
7775, 76ffvelcdmd 7057 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓𝑑) ∈ ω)
7877fmpttd 7087 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω)
7912, 25, 15cantnfs 9619 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
8079simprbda 498 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑓:𝑐⟶ω)
8180adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓:𝑐⟶ω)
8281, 57feqresmpt 6930 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) = (𝑑𝑏 ↦ (𝑓𝑑)))
8354, 68fsuppres 9344 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) finSupp ∅)
8482, 83eqbrtrrd 5131 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)
8555, 49, 56cantnfs 9619 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏) ↔ ((𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω ∧ (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)))
8678, 84, 85mpbir2and 713 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏))
8755, 49, 56, 50, 57, 67, 68, 12, 86cantnfres 9630 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
8882fveq2d 6862 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))))
8981feqmptd 6929 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 = (𝑑𝑐 ↦ (𝑓𝑑)))
9089fveq2d 6862 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
9187, 88, 903eqtr4d 2774 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑐)‘𝑓))
9291, 58eqtrd 2764 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)
9347, 54, 923jca 1128 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴))
9493ex 412 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)))
9594pm4.71rd 562 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
96 3an4anass 1104 . . . . . . . . . 10 (((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
9795, 96bitrdi 287 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9897reubidva 3370 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9946, 98mpbid 232 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
10099ex 412 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1019, 100sylbid 240 . . . . 5 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
102101ralrimiv 3124 . . . 4 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
1031023exp 1119 . . 3 (𝐴 ∈ On → (𝑏 ∈ On → (𝐴 ∈ (ω ↑o 𝑏) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))))
104103reximdvai 3144 . 2 (𝐴 ∈ On → (∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏) → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1051, 104mpd 15 1 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3352  cdif 3911  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  ωcom 7842  1oc1o 8427  2oc2o 8428  o coe 8433   finSupp cfsupp 9312   CNF ccnf 9614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-cnf 9615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator