Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnf2 Structured version   Visualization version   GIF version

Theorem cantnf2 43349
Description: For every ordinal, 𝐴, there is a an ordinal exponent 𝑏 such that 𝐴 is less than (ω ↑o 𝑏) and for every ordinal at least as large as 𝑏 there is a unique Cantor normal form, 𝑓, with zeros for all the unnecessary higher terms, that sums to 𝐴. Theorem 5.3 of [Schloeder] p. 16. (Contributed by RP, 3-Feb-2025.)
Assertion
Ref Expression
cantnf2 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Distinct variable group:   𝐴,𝑏,𝑐,𝑓

Proof of Theorem cantnf2
Dummy variables 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onexoegt 43268 . 2 (𝐴 ∈ On → ∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏))
2 eldif 3936 . . . . . . 7 (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏))
3 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → 𝑏 ∈ On)
4 pm3.2 469 . . . . . . . . . 10 (𝑏 ∈ On → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
53, 4syl 17 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏 ∈ On ∧ 𝑐 ∈ On)))
6 ontri1 6386 . . . . . . . . 9 ((𝑏 ∈ On ∧ 𝑐 ∈ On) → (𝑏𝑐 ↔ ¬ 𝑐𝑏))
75, 6syl6 35 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ On → (𝑏𝑐 ↔ ¬ 𝑐𝑏)))
87pm5.32d 577 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) ↔ (𝑐 ∈ On ∧ ¬ 𝑐𝑏)))
92, 8bitr4id 290 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) ↔ (𝑐 ∈ On ∧ 𝑏𝑐)))
10 simplr 768 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑎 = 𝐴)
1110breq2d 5131 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎𝑓(ω CNF 𝑐)𝐴))
12 eqid 2735 . . . . . . . . . . . . . 14 dom (ω CNF 𝑐) = dom (ω CNF 𝑐)
13 omelon 9660 . . . . . . . . . . . . . . 15 ω ∈ On
1413a1i 11 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → ω ∈ On)
15 simprl 770 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑐 ∈ On)
1615ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
1712, 14, 16cantnff1o 9710 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
18 f1ofun 6820 . . . . . . . . . . . . 13 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
1917, 18syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → Fun (ω CNF 𝑐))
20 funbrfvb 6932 . . . . . . . . . . . 12 ((Fun (ω CNF 𝑐) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2119, 20sylancom 588 . . . . . . . . . . 11 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴𝑓(ω CNF 𝑐)𝐴))
2211, 21bitr4d 282 . . . . . . . . . 10 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (𝑓(ω CNF 𝑐)𝑎 ↔ ((ω CNF 𝑐)‘𝑓) = 𝐴))
2322reubidva 3375 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑎 = 𝐴) → (∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴))
24 simpl2 1193 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏 ∈ On)
2513a1i 11 . . . . . . . . . . . . . 14 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ω ∈ On)
2624, 15, 253jca 1128 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On))
27 peano1 7884 . . . . . . . . . . . . 13 ∅ ∈ ω
2826, 27jctir 520 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω))
29 simprr 772 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝑏𝑐)
30 oewordi 8603 . . . . . . . . . . . 12 (((𝑏 ∈ On ∧ 𝑐 ∈ On ∧ ω ∈ On) ∧ ∅ ∈ ω) → (𝑏𝑐 → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐)))
3128, 29, 30sylc 65 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω ↑o 𝑏) ⊆ (ω ↑o 𝑐))
32 simpl3 1194 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑏))
3331, 32sseldd 3959 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ (ω ↑o 𝑐))
3412, 25, 15cantnff1o 9710 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐))
35 dff1o5 6827 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
36 simpr 484 . . . . . . . . . . . 12 (((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1→(ω ↑o 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3735, 36sylbi 217 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3834, 37syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ran (ω CNF 𝑐) = (ω ↑o 𝑐))
3933, 38eleqtrrd 2837 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → 𝐴 ∈ ran (ω CNF 𝑐))
40 dff1o2 6823 . . . . . . . . . . . 12 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) ↔ ((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)))
41 simp2 1137 . . . . . . . . . . . 12 (((ω CNF 𝑐) Fn dom (ω CNF 𝑐) ∧ Fun (ω CNF 𝑐) ∧ ran (ω CNF 𝑐) = (ω ↑o 𝑐)) → Fun (ω CNF 𝑐))
4240, 41sylbi 217 . . . . . . . . . . 11 ((ω CNF 𝑐):dom (ω CNF 𝑐)–1-1-onto→(ω ↑o 𝑐) → Fun (ω CNF 𝑐))
4334, 42syl 17 . . . . . . . . . 10 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → Fun (ω CNF 𝑐))
44 funcnv3 6606 . . . . . . . . . 10 (Fun (ω CNF 𝑐) ↔ ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4543, 44sylib 218 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∀𝑎 ∈ ran (ω CNF 𝑐)∃!𝑓 ∈ dom (ω CNF 𝑐)𝑓(ω CNF 𝑐)𝑎)
4623, 39, 45rspcdv2 3596 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴)
4732ad2antrr 726 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝐴 ∈ (ω ↑o 𝑏))
48 simplr 768 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 ∈ dom (ω CNF 𝑐))
4913a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ On)
5015ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑐 ∈ On)
5112, 49, 50cantnfs 9680 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
5248, 51mpbid 232 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
53 simpr 484 . . . . . . . . . . . . . 14 ((𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅) → 𝑓 finSupp ∅)
5452, 53syl 17 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 finSupp ∅)
55 eqid 2735 . . . . . . . . . . . . . . . 16 dom (ω CNF 𝑏) = dom (ω CNF 𝑏)
5624ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏 ∈ On)
5729ad2antrr 726 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑏𝑐)
58 simpr 484 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = 𝐴)
5958, 47eqeltrd 2834 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏))
60 1onn 8652 . . . . . . . . . . . . . . . . . . . . 21 1o ∈ ω
61 ondif2 8514 . . . . . . . . . . . . . . . . . . . . 21 (ω ∈ (On ∖ 2o) ↔ (ω ∈ On ∧ 1o ∈ ω))
6213, 60, 61mpbir2an 711 . . . . . . . . . . . . . . . . . . . 20 ω ∈ (On ∖ 2o)
6362a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ω ∈ (On ∖ 2o))
64 cantnfresb 43348 . . . . . . . . . . . . . . . . . . 19 (((ω ∈ (On ∖ 2o) ∧ 𝑐 ∈ On) ∧ (𝑏 ∈ On ∧ 𝑓 ∈ dom (ω CNF 𝑐))) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6563, 50, 56, 48, 64syl22anc 838 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (((ω CNF 𝑐)‘𝑓) ∈ (ω ↑o 𝑏) ↔ ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅))
6659, 65mpbid 232 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∀𝑑 ∈ (𝑐𝑏)(𝑓𝑑) = ∅)
6766r19.21bi 3234 . . . . . . . . . . . . . . . 16 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑 ∈ (𝑐𝑏)) → (𝑓𝑑) = ∅)
6827a1i 11 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ∅ ∈ ω)
69 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓 ∈ dom (ω CNF 𝑐))
7013a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → ω ∈ On)
7115adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑐 ∈ On)
7271ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑐 ∈ On)
7312, 70, 72cantnfs 9680 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
7469, 73mpbid 232 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅))
7574simpld 494 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑓:𝑐⟶ω)
7657sselda 3958 . . . . . . . . . . . . . . . . . . 19 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → 𝑑𝑐)
7775, 76ffvelcdmd 7075 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ∧ 𝑑𝑏) → (𝑓𝑑) ∈ ω)
7877fmpttd 7105 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω)
7912, 25, 15cantnfs 9680 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (𝑓 ∈ dom (ω CNF 𝑐) ↔ (𝑓:𝑐⟶ω ∧ 𝑓 finSupp ∅)))
8079simprbda 498 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → 𝑓:𝑐⟶ω)
8180adantr 480 . . . . . . . . . . . . . . . . . . 19 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓:𝑐⟶ω)
8281, 57feqresmpt 6948 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) = (𝑑𝑏 ↦ (𝑓𝑑)))
8354, 68fsuppres 9405 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑓𝑏) finSupp ∅)
8482, 83eqbrtrrd 5143 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)
8555, 49, 56cantnfs 9680 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏) ↔ ((𝑑𝑏 ↦ (𝑓𝑑)):𝑏⟶ω ∧ (𝑑𝑏 ↦ (𝑓𝑑)) finSupp ∅)))
8678, 84, 85mpbir2and 713 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝑑𝑏 ↦ (𝑓𝑑)) ∈ dom (ω CNF 𝑏))
8755, 49, 56, 50, 57, 67, 68, 12, 86cantnfres 9691 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
8882fveq2d 6880 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑏)‘(𝑑𝑏 ↦ (𝑓𝑑))))
8981feqmptd 6947 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → 𝑓 = (𝑑𝑐 ↦ (𝑓𝑑)))
9089fveq2d 6880 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑐)‘𝑓) = ((ω CNF 𝑐)‘(𝑑𝑐 ↦ (𝑓𝑑))))
9187, 88, 903eqtr4d 2780 . . . . . . . . . . . . . 14 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = ((ω CNF 𝑐)‘𝑓))
9291, 58eqtrd 2770 . . . . . . . . . . . . 13 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)
9347, 54, 923jca 1128 . . . . . . . . . . . 12 (((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴))
9493ex 412 . . . . . . . . . . 11 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 → (𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴)))
9594pm4.71rd 562 . . . . . . . . . 10 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
96 3an4anass 1104 . . . . . . . . . 10 (((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅ ∧ ((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴) ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴) ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
9795, 96bitrdi 287 . . . . . . . . 9 ((((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) ∧ 𝑓 ∈ dom (ω CNF 𝑐)) → (((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9897reubidva 3375 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → (∃!𝑓 ∈ dom (ω CNF 𝑐)((ω CNF 𝑐)‘𝑓) = 𝐴 ↔ ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
9946, 98mpbid 232 . . . . . . 7 (((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) ∧ (𝑐 ∈ On ∧ 𝑏𝑐)) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
10099ex 412 . . . . . 6 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ((𝑐 ∈ On ∧ 𝑏𝑐) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1019, 100sylbid 240 . . . . 5 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → (𝑐 ∈ (On ∖ 𝑏) → ∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
102101ralrimiv 3131 . . . 4 ((𝐴 ∈ On ∧ 𝑏 ∈ On ∧ 𝐴 ∈ (ω ↑o 𝑏)) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
1031023exp 1119 . . 3 (𝐴 ∈ On → (𝑏 ∈ On → (𝐴 ∈ (ω ↑o 𝑏) → ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))))
104103reximdvai 3151 . 2 (𝐴 ∈ On → (∃𝑏 ∈ On 𝐴 ∈ (ω ↑o 𝑏) → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))))
1051, 104mpd 15 1 (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ∃!wreu 3357  cdif 3923  wss 3926  c0 4308   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  ran crn 5655  cres 5656  Oncon0 6352  Fun wfun 6525   Fn wfn 6526  wf 6527  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  ωcom 7861  1oc1o 8473  2oc2o 8474  o coe 8479   finSupp cfsupp 9373   CNF ccnf 9675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-oexp 8486  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-oi 9524  df-cnf 9676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator