MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclwlkupgr Structured version   Visualization version   GIF version

Theorem isclwlkupgr 29035
Description: Properties of a pair of functions to be a closed walk (in a pseudograph). (Contributed by Alexander van der Vekens, 24-Jun-2018.) (Revised by AV, 11-Apr-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
isclwlke.v 𝑉 = (Vtxβ€˜πΊ)
isclwlke.i 𝐼 = (iEdgβ€˜πΊ)
Assertion
Ref Expression
isclwlkupgr (𝐺 ∈ UPGraph β†’ (𝐹(ClWalksβ€˜πΊ)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))))
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝐺   𝑃,π‘˜   π‘˜,𝐼   π‘˜,𝑉

Proof of Theorem isclwlkupgr
StepHypRef Expression
1 isclwlk 29030 . 2 (𝐹(ClWalksβ€˜πΊ)𝑃 ↔ (𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))
2 isclwlke.v . . . . 5 𝑉 = (Vtxβ€˜πΊ)
3 isclwlke.i . . . . 5 𝐼 = (iEdgβ€˜πΊ)
42, 3upgriswlk 28898 . . . 4 (𝐺 ∈ UPGraph β†’ (𝐹(Walksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
54anbi1d 631 . . 3 (𝐺 ∈ UPGraph β†’ ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ)))))
6 3an4anass 1106 . . 3 (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰ ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}) ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ)))))
75, 6bitrdi 287 . 2 (𝐺 ∈ UPGraph β†’ ((𝐹(Walksβ€˜πΊ)𝑃 ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))))
81, 7bitrid 283 1 (𝐺 ∈ UPGraph β†’ (𝐹(ClWalksβ€˜πΊ)𝑃 ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(β™―β€˜πΉ))βŸΆπ‘‰) ∧ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))(πΌβ€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} ∧ (π‘ƒβ€˜0) = (π‘ƒβ€˜(β™―β€˜πΉ))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  {cpr 4631   class class class wbr 5149  dom cdm 5677  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   + caddc 11113  ...cfz 13484  ..^cfzo 13627  β™―chash 14290  Word cword 14464  Vtxcvtx 28256  iEdgciedg 28257  UPGraphcupgr 28340  Walkscwlks 28853  ClWalkscclwlks 29027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-hash 14291  df-word 14465  df-edg 28308  df-uhgr 28318  df-upgr 28342  df-wlks 28856  df-clwlks 29028
This theorem is referenced by:  clwlkclwwlk  29255
  Copyright terms: Public domain W3C validator