Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthincd2 Structured version   Visualization version   GIF version

Theorem isthincd2 49423
Description: The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd.b (𝜑𝐵 = (Base‘𝐶))
isthincd.h (𝜑𝐻 = (Hom ‘𝐶))
isthincd.t ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
isthincd2.o (𝜑· = (comp‘𝐶))
isthincd2.c (𝜑𝐶𝑉)
isthincd2.ps (𝜓 ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))))
isthincd2.1 ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))
isthincd2.2 ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Assertion
Ref Expression
isthincd2 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
Distinct variable groups:   𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦   1 ,𝑓,𝑔,𝑥,𝑧   · ,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝐶,𝑔,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   𝜑,𝑔,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑦)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem isthincd2
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isthincd.b . . 3 (𝜑𝐵 = (Base‘𝐶))
2 isthincd.h . . 3 (𝜑𝐻 = (Hom ‘𝐶))
3 isthincd.t . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
4 isthincd2.o . . . . 5 (𝜑· = (comp‘𝐶))
5 isthincd2.c . . . . 5 (𝜑𝐶𝑉)
6 3an4anass 1104 . . . . . . . 8 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ 𝑤𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)))
76anbi1i 624 . . . . . . 7 ((((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ 𝑤𝐵) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
8 isthincd2.ps . . . . . . . . 9 (𝜓 ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))))
983anbi1i 1157 . . . . . . . 8 ((𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) ∧ 𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)))
10 3anass 1094 . . . . . . . 8 ((((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) ∧ 𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) ∧ (𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))))
11 an4 656 . . . . . . . 8 ((((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) ∧ (𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ 𝑤𝐵) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
129, 10, 113bitri 297 . . . . . . 7 ((𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ 𝑤𝐵) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
13 df-3an 1088 . . . . . . . 8 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))
1413anbi2i 623 . . . . . . 7 ((((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
157, 12, 143bitr4i 303 . . . . . 6 ((𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
16 df-3an 1088 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
1715, 16bitr4i 278 . . . . 5 ((𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
18 isthincd2.1 . . . . 5 ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))
19 simpr1l 1231 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑥𝐵)
20 simpr1r 1232 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑦𝐵)
21 simpr31 1264 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑓 ∈ (𝑥𝐻𝑦))
2220, 18syldan 591 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 1 ∈ (𝑦𝐻𝑦))
238bianass 642 . . . . . . . . . . . 12 ((𝜑𝜓) ↔ ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))))
24 isthincd2.2 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2523, 24sylbir 235 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2625ralrimivva 3172 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2726ralrimivvva 3175 . . . . . . . . 9 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2827adantr 480 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2919, 20, 20, 21, 22, 28isthincd2lem2 49421 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) ∈ (𝑥𝐻𝑦))
303ralrimivva 3172 . . . . . . . 8 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
3130adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
3219, 20, 29, 21, 31isthincd2lem1 49411 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
3317, 32sylan2b 594 . . . . 5 ((𝜑 ∧ (𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
34 simpr2l 1233 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑧𝐵)
35 simpr32 1265 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑔 ∈ (𝑦𝐻𝑧))
3620, 20, 34, 22, 35, 28isthincd2lem2 49421 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) ∈ (𝑦𝐻𝑧))
3720, 34, 36, 35, 31isthincd2lem1 49411 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
3817, 37sylan2b 594 . . . . 5 ((𝜑 ∧ (𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
39243ad2antr1 1189 . . . . 5 ((𝜑 ∧ (𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
40 simpr2r 1234 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑤𝐵)
41 simpr33 1266 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑘 ∈ (𝑧𝐻𝑤))
4220, 34, 40, 35, 41, 28isthincd2lem2 49421 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) ∈ (𝑦𝐻𝑤))
4319, 20, 40, 21, 42, 28isthincd2lem2 49421 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) ∈ (𝑥𝐻𝑤))
4417, 39sylan2br 595 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
4519, 34, 40, 44, 41, 28isthincd2lem2 49421 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ∈ (𝑥𝐻𝑤))
4619, 40, 43, 45, 31isthincd2lem1 49411 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
4717, 46sylan2b 594 . . . . 5 ((𝜑 ∧ (𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
481, 2, 4, 5, 17, 18, 33, 38, 39, 47iscatd2 17605 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
4948simpld 494 . . 3 (𝜑𝐶 ∈ Cat)
501, 2, 3, 49isthincd 49422 . 2 (𝜑𝐶 ∈ ThinCat)
5148simprd 495 . 2 (𝜑 → (Id‘𝐶) = (𝑦𝐵1 ))
5250, 51jca 511 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃*wmo 2531  wral 3044  cop 4585  cmpt 5176  cfv 6486  (class class class)co 7353  Basecbs 17138  Hom chom 17190  compcco 17191  Catccat 17588  Idccid 17589  ThinCatcthinc 49403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-cat 17592  df-cid 17593  df-thinc 49404
This theorem is referenced by:  indthinc  49448  indthincALT  49449  prsthinc  49450
  Copyright terms: Public domain W3C validator