Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthincd2 Structured version   Visualization version   GIF version

Theorem isthincd2 46330
Description: The predicate "𝐶 is a thin category" without knowing 𝐶 is a category (deduction form). The identity arrow operator is also provided as a byproduct. (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthincd.b (𝜑𝐵 = (Base‘𝐶))
isthincd.h (𝜑𝐻 = (Hom ‘𝐶))
isthincd.t ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
isthincd2.o (𝜑· = (comp‘𝐶))
isthincd2.c (𝜑𝐶𝑉)
isthincd2.ps (𝜓 ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))))
isthincd2.1 ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))
isthincd2.2 ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
Assertion
Ref Expression
isthincd2 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
Distinct variable groups:   𝑦,𝐵   𝐶,𝑓,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦   1 ,𝑓,𝑔,𝑥,𝑧   · ,𝑓,𝑔,𝑥,𝑦,𝑧   𝐵,𝑓,𝑔,𝑥,𝑧   𝐶,𝑔,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   𝜑,𝑔,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧,𝑓,𝑔)   1 (𝑦)   𝑉(𝑥,𝑦,𝑧,𝑓,𝑔)

Proof of Theorem isthincd2
Dummy variables 𝑘 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isthincd.b . . 3 (𝜑𝐵 = (Base‘𝐶))
2 isthincd.h . . 3 (𝜑𝐻 = (Hom ‘𝐶))
3 isthincd.t . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
4 isthincd2.o . . . . 5 (𝜑· = (comp‘𝐶))
5 isthincd2.c . . . . 5 (𝜑𝐶𝑉)
6 3an4anass 1104 . . . . . . . 8 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ 𝑤𝐵) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)))
76anbi1i 624 . . . . . . 7 ((((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ 𝑤𝐵) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
8 isthincd2.ps . . . . . . . . 9 (𝜓 ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))))
983anbi1i 1156 . . . . . . . 8 ((𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) ∧ 𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)))
10 3anass 1094 . . . . . . . 8 ((((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) ∧ 𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) ∧ (𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))))
11 an4 653 . . . . . . . 8 ((((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) ∧ (𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ 𝑤𝐵) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
129, 10, 113bitri 297 . . . . . . 7 ((𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ 𝑤𝐵) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
13 df-3an 1088 . . . . . . . 8 ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)) ↔ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))
1413anbi2i 623 . . . . . . 7 ((((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ ((𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧)) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
157, 12, 143bitr4i 303 . . . . . 6 ((𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
16 df-3an 1088 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))) ↔ (((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
1715, 16bitr4i 277 . . . . 5 ((𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
18 isthincd2.1 . . . . 5 ((𝜑𝑦𝐵) → 1 ∈ (𝑦𝐻𝑦))
19 simpr1l 1229 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑥𝐵)
20 simpr1r 1230 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑦𝐵)
21 simpr31 1262 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑓 ∈ (𝑥𝐻𝑦))
2220, 18syldan 591 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 1 ∈ (𝑦𝐻𝑦))
238bianass 639 . . . . . . . . . . . 12 ((𝜑𝜓) ↔ ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))))
24 isthincd2.2 . . . . . . . . . . . 12 ((𝜑𝜓) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2523, 24sylbir 234 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2625ralrimivva 3124 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ∀𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2726ralrimivvva 3128 . . . . . . . . 9 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2827adantr 481 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑓 ∈ (𝑥𝐻𝑦)∀𝑔 ∈ (𝑦𝐻𝑧)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
2919, 20, 20, 21, 22, 28isthincd2lem2 46328 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) ∈ (𝑥𝐻𝑦))
303ralrimivva 3124 . . . . . . . 8 (𝜑 → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
3130adantr 481 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))
3219, 20, 29, 21, 31isthincd2lem1 46319 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
3317, 32sylan2b 594 . . . . 5 ((𝜑 ∧ (𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
34 simpr2l 1231 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑧𝐵)
35 simpr32 1263 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑔 ∈ (𝑦𝐻𝑧))
3620, 20, 34, 22, 35, 28isthincd2lem2 46328 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) ∈ (𝑦𝐻𝑧))
3720, 34, 36, 35, 31isthincd2lem1 46319 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
3817, 37sylan2b 594 . . . . 5 ((𝜑 ∧ (𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
39243ad2antr1 1187 . . . . 5 ((𝜑 ∧ (𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
40 simpr2r 1232 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑤𝐵)
41 simpr33 1264 . . . . . . . . 9 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → 𝑘 ∈ (𝑧𝐻𝑤))
4220, 34, 40, 35, 41, 28isthincd2lem2 46328 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) ∈ (𝑦𝐻𝑤))
4319, 20, 40, 21, 42, 28isthincd2lem2 46328 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) ∈ (𝑥𝐻𝑤))
4417, 39sylan2br 595 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
4519, 34, 40, 44, 41, 28isthincd2lem2 46328 . . . . . . 7 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) ∈ (𝑥𝐻𝑤))
4619, 40, 43, 45, 31isthincd2lem1 46319 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝑧𝐵𝑤𝐵) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
4717, 46sylan2b 594 . . . . 5 ((𝜑 ∧ (𝜓𝑤𝐵𝑘 ∈ (𝑧𝐻𝑤))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
481, 2, 4, 5, 17, 18, 33, 38, 39, 47iscatd2 17399 . . . 4 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
4948simpld 495 . . 3 (𝜑𝐶 ∈ Cat)
501, 2, 3, 49isthincd 46329 . 2 (𝜑𝐶 ∈ ThinCat)
5148simprd 496 . 2 (𝜑 → (Id‘𝐶) = (𝑦𝐵1 ))
5250, 51jca 512 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2107  ∃*wmo 2539  wral 3065  cop 4568  cmpt 5158  cfv 6437  (class class class)co 7284  Basecbs 16921  Hom chom 16982  compcco 16983  Catccat 17382  Idccid 17383  ThinCatcthinc 46311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pr 5353
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4258  df-if 4461  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-cat 17386  df-cid 17387  df-thinc 46312
This theorem is referenced by:  indthinc  46344  indthincALT  46345  prsthinc  46346
  Copyright terms: Public domain W3C validator