Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ioran | Structured version Visualization version GIF version |
Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.) |
Ref | Expression |
---|---|
3ioran | ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 982 | . . 3 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
2 | 1 | anbi1i 625 | . 2 ⊢ ((¬ (𝜑 ∨ 𝜓) ∧ ¬ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒)) |
3 | ioran 982 | . . 3 ⊢ (¬ ((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) ∧ ¬ 𝜒)) | |
4 | df-3or 1088 | . . 3 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
5 | 3, 4 | xchnxbir 333 | . 2 ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ (𝜑 ∨ 𝜓) ∧ ¬ 𝜒)) |
6 | df-3an 1089 | . 2 ⊢ ((¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒)) | |
7 | 2, 5, 6 | 3bitr4i 303 | 1 ⊢ (¬ (𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∨ wo 845 ∨ w3o 1086 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 |
This theorem is referenced by: 3oran 1109 cadnot 1614 lcmftp 16390 prm23ge5 16565 cnfldfun 20658 fbunfip 23069 frgrregord013 28808 wl-nfeqfb 35743 sn-inelr 40630 |
Copyright terms: Public domain | W3C validator |