MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ioran Structured version   Visualization version   GIF version

Theorem 3ioran 1103
Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
3ioran (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))

Proof of Theorem 3ioran
StepHypRef Expression
1 ioran 981 . . 3 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
21anbi1i 626 . 2 ((¬ (𝜑𝜓) ∧ ¬ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒))
3 ioran 981 . . 3 (¬ ((𝜑𝜓) ∨ 𝜒) ↔ (¬ (𝜑𝜓) ∧ ¬ 𝜒))
4 df-3or 1085 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
53, 4xchnxbir 336 . 2 (¬ (𝜑𝜓𝜒) ↔ (¬ (𝜑𝜓) ∧ ¬ 𝜒))
6 df-3an 1086 . 2 ((¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒))
72, 5, 63bitr4i 306 1 (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  wo 844  w3o 1083  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086
This theorem is referenced by:  3oran  1106  cadnot  1617  lcmftp  15969  prm23ge5  16141  cnfldfunALT  20102  fbunfip  22472  frgrregord013  28178  wl-nfeqfb  34899  sn-inelr  39524
  Copyright terms: Public domain W3C validator