| Step | Hyp | Ref
| Expression |
| 1 | | eldifi 4111 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ (On ∖
2o) → 𝐴
∈ On) |
| 2 | 1 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → 𝐴 ∈ On) |
| 3 | 2 | ad2antrr 726 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ On) |
| 4 | | simprl 770 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ On) |
| 5 | | oecl 8554 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o 𝐶) ∈ On) |
| 6 | 3, 4, 5 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o 𝐶) ∈ On) |
| 7 | | om1 8559 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ↑o 𝐶) ∈ On → ((𝐴 ↑o 𝐶) ·o
1o) = (𝐴
↑o 𝐶)) |
| 8 | 6, 7 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o
1o) = (𝐴
↑o 𝐶)) |
| 9 | | df1o2 8492 |
. . . . . . . . . . . . . . . 16
⊢
1o = {∅} |
| 10 | | dif1o 8517 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐷 ∈ (𝐴 ∖ 1o) ↔ (𝐷 ∈ 𝐴 ∧ 𝐷 ≠ ∅)) |
| 11 | 10 | simprbi 496 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷 ≠ ∅) |
| 12 | 11 | ad2antll 729 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ≠ ∅) |
| 13 | | eldifi 4111 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷 ∈ 𝐴) |
| 14 | 13 | ad2antll 729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ∈ 𝐴) |
| 15 | | onelon 6382 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ On ∧ 𝐷 ∈ 𝐴) → 𝐷 ∈ On) |
| 16 | 3, 14, 15 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ∈ On) |
| 17 | | on0eln0 6414 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐷 ∈ On → (∅
∈ 𝐷 ↔ 𝐷 ≠ ∅)) |
| 18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (∅
∈ 𝐷 ↔ 𝐷 ≠ ∅)) |
| 19 | 12, 18 | mpbird 257 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅
∈ 𝐷) |
| 20 | 19 | snssd 4790 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → {∅}
⊆ 𝐷) |
| 21 | 9, 20 | eqsstrid 4002 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) →
1o ⊆ 𝐷) |
| 22 | | 1on 8497 |
. . . . . . . . . . . . . . . . 17
⊢
1o ∈ On |
| 23 | 22 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) →
1o ∈ On) |
| 24 | | omwordi 8588 |
. . . . . . . . . . . . . . . 16
⊢
((1o ∈ On ∧ 𝐷 ∈ On ∧ (𝐴 ↑o 𝐶) ∈ On) → (1o ⊆
𝐷 → ((𝐴 ↑o 𝐶) ·o
1o) ⊆ ((𝐴
↑o 𝐶)
·o 𝐷))) |
| 25 | 23, 16, 6, 24 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) →
(1o ⊆ 𝐷
→ ((𝐴
↑o 𝐶)
·o 1o) ⊆ ((𝐴 ↑o 𝐶) ·o 𝐷))) |
| 26 | 21, 25 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o
1o) ⊆ ((𝐴
↑o 𝐶)
·o 𝐷)) |
| 27 | 8, 26 | eqsstrrd 3999 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o 𝐶) ⊆ ((𝐴 ↑o 𝐶) ·o 𝐷)) |
| 28 | | omcl 8553 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ↑o 𝐶) ∈ On ∧ 𝐷 ∈ On) → ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ On) |
| 29 | 6, 16, 28 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ On) |
| 30 | | simplrl 776 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ (𝐴 ↑o 𝐶)) |
| 31 | | onelon 6382 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ↑o 𝐶) ∈ On ∧ 𝐸 ∈ (𝐴 ↑o 𝐶)) → 𝐸 ∈ On) |
| 32 | 6, 30, 31 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ On) |
| 33 | | oaword1 8569 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ↑o 𝐶) ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴 ↑o 𝐶) ·o 𝐷) ⊆ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸)) |
| 34 | 29, 32, 33 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o 𝐷) ⊆ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸)) |
| 35 | | simplrr 777 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) |
| 36 | 34, 35 | sseqtrd 4000 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o 𝐷) ⊆ 𝐵) |
| 37 | 27, 36 | sstrd 3974 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o 𝐶) ⊆ 𝐵) |
| 38 | | oeeu.1 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = ∪
∩ {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴 ↑o 𝑥)} |
| 39 | 38 | oeeulem 8618 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴 ↑o 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑o suc 𝑋))) |
| 40 | 39 | simp3d 1144 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴 ↑o suc 𝑋)) |
| 41 | 40 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴 ↑o suc 𝑋)) |
| 42 | 39 | simp1d 1142 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → 𝑋 ∈ On) |
| 43 | 42 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ On) |
| 44 | | onsuc 7810 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ On → suc 𝑋 ∈ On) |
| 45 | 43, 44 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝑋 ∈ On) |
| 46 | | oecl 8554 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ suc 𝑋 ∈ On) → (𝐴 ↑o suc 𝑋) ∈ On) |
| 47 | 3, 45, 46 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o suc 𝑋) ∈ On) |
| 48 | | ontr2 6405 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑o 𝐶) ∈ On ∧ (𝐴 ↑o suc 𝑋) ∈ On) → (((𝐴 ↑o 𝐶) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑o suc 𝑋)) → (𝐴 ↑o 𝐶) ∈ (𝐴 ↑o suc 𝑋))) |
| 49 | 6, 47, 48 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴 ↑o 𝐶) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑o suc 𝑋)) → (𝐴 ↑o 𝐶) ∈ (𝐴 ↑o suc 𝑋))) |
| 50 | 37, 41, 49 | mp2and 699 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o 𝐶) ∈ (𝐴 ↑o suc 𝑋)) |
| 51 | | simplll 774 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ (On ∖
2o)) |
| 52 | | oeord 8605 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖
2o)) → (𝐶
∈ suc 𝑋 ↔ (𝐴 ↑o 𝐶) ∈ (𝐴 ↑o suc 𝑋))) |
| 53 | 4, 45, 51, 52 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 ∈ suc 𝑋 ↔ (𝐴 ↑o 𝐶) ∈ (𝐴 ↑o suc 𝑋))) |
| 54 | 50, 53 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ suc 𝑋) |
| 55 | | onsssuc 6449 |
. . . . . . . . . . 11
⊢ ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶 ⊆ 𝑋 ↔ 𝐶 ∈ suc 𝑋)) |
| 56 | 4, 43, 55 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 ⊆ 𝑋 ↔ 𝐶 ∈ suc 𝑋)) |
| 57 | 54, 56 | mpbird 257 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ⊆ 𝑋) |
| 58 | 39 | simp2d 1143 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → (𝐴 ↑o 𝑋) ⊆ 𝐵) |
| 59 | 58 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o 𝑋) ⊆ 𝐵) |
| 60 | | eloni 6367 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 61 | 3, 60 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → Ord 𝐴) |
| 62 | | ordsucss 7817 |
. . . . . . . . . . . . . . . 16
⊢ (Ord
𝐴 → (𝐷 ∈ 𝐴 → suc 𝐷 ⊆ 𝐴)) |
| 63 | 61, 14, 62 | sylc 65 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷 ⊆ 𝐴) |
| 64 | | onsuc 7810 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐷 ∈ On → suc 𝐷 ∈ On) |
| 65 | 16, 64 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷 ∈ On) |
| 66 | | dif20el 8522 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ (On ∖
2o) → ∅ ∈ 𝐴) |
| 67 | 51, 66 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅
∈ 𝐴) |
| 68 | | oen0 8603 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈
𝐴) → ∅ ∈
(𝐴 ↑o 𝐶)) |
| 69 | 3, 4, 67, 68 | syl21anc 837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅
∈ (𝐴
↑o 𝐶)) |
| 70 | | omword 8587 |
. . . . . . . . . . . . . . . 16
⊢ (((suc
𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑o 𝐶) ∈ On) ∧ ∅
∈ (𝐴
↑o 𝐶))
→ (suc 𝐷 ⊆ 𝐴 ↔ ((𝐴 ↑o 𝐶) ·o suc 𝐷) ⊆ ((𝐴 ↑o 𝐶) ·o 𝐴))) |
| 71 | 65, 3, 6, 69, 70 | syl31anc 1375 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (suc 𝐷 ⊆ 𝐴 ↔ ((𝐴 ↑o 𝐶) ·o suc 𝐷) ⊆ ((𝐴 ↑o 𝐶) ·o 𝐴))) |
| 72 | 63, 71 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o suc 𝐷) ⊆ ((𝐴 ↑o 𝐶) ·o 𝐴)) |
| 73 | | oaord 8564 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐸 ∈ On ∧ (𝐴 ↑o 𝐶) ∈ On ∧ ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ On) → (𝐸 ∈ (𝐴 ↑o 𝐶) ↔ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴 ↑o 𝐶) ·o 𝐷) +o (𝐴 ↑o 𝐶)))) |
| 74 | 32, 6, 29, 73 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐸 ∈ (𝐴 ↑o 𝐶) ↔ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴 ↑o 𝐶) ·o 𝐷) +o (𝐴 ↑o 𝐶)))) |
| 75 | 30, 74 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴 ↑o 𝐶) ·o 𝐷) +o (𝐴 ↑o 𝐶))) |
| 76 | 35, 75 | eqeltrrd 2836 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (((𝐴 ↑o 𝐶) ·o 𝐷) +o (𝐴 ↑o 𝐶))) |
| 77 | | odi 8596 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ↑o 𝐶) ∈ On ∧ 𝐷 ∈ On ∧ 1o
∈ On) → ((𝐴
↑o 𝐶)
·o (𝐷
+o 1o)) = (((𝐴 ↑o 𝐶) ·o 𝐷) +o ((𝐴 ↑o 𝐶) ·o
1o))) |
| 78 | 6, 16, 23, 77 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o (𝐷 +o 1o)) =
(((𝐴 ↑o
𝐶) ·o
𝐷) +o ((𝐴 ↑o 𝐶) ·o
1o))) |
| 79 | | oa1suc 8548 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐷 ∈ On → (𝐷 +o 1o) =
suc 𝐷) |
| 80 | 16, 79 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐷 +o 1o) =
suc 𝐷) |
| 81 | 80 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o (𝐷 +o 1o)) =
((𝐴 ↑o
𝐶) ·o suc
𝐷)) |
| 82 | 8 | oveq2d 7426 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴 ↑o 𝐶) ·o 𝐷) +o ((𝐴 ↑o 𝐶) ·o
1o)) = (((𝐴
↑o 𝐶)
·o 𝐷)
+o (𝐴
↑o 𝐶))) |
| 83 | 78, 81, 82 | 3eqtr3d 2779 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴 ↑o 𝐶) ·o suc 𝐷) = (((𝐴 ↑o 𝐶) ·o 𝐷) +o (𝐴 ↑o 𝐶))) |
| 84 | 76, 83 | eleqtrrd 2838 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴 ↑o 𝐶) ·o suc 𝐷)) |
| 85 | 72, 84 | sseldd 3964 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴 ↑o 𝐶) ·o 𝐴)) |
| 86 | | oesuc 8544 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ↑o suc 𝐶) = ((𝐴 ↑o 𝐶) ·o 𝐴)) |
| 87 | 3, 4, 86 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o suc 𝐶) = ((𝐴 ↑o 𝐶) ·o 𝐴)) |
| 88 | 85, 87 | eleqtrrd 2838 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴 ↑o suc 𝐶)) |
| 89 | | oecl 8554 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴 ↑o 𝑋) ∈ On) |
| 90 | 3, 43, 89 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o 𝑋) ∈ On) |
| 91 | | onsuc 7810 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 ∈ On → suc 𝐶 ∈ On) |
| 92 | 91 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐶 ∈ On) |
| 93 | | oecl 8554 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴 ↑o suc 𝐶) ∈ On) |
| 94 | 3, 92, 93 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o suc 𝐶) ∈ On) |
| 95 | | ontr2 6405 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ (𝐴 ↑o suc 𝐶) ∈ On) → (((𝐴 ↑o 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑o suc 𝐶)) → (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o suc 𝐶))) |
| 96 | 90, 94, 95 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴 ↑o 𝑋) ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 ↑o suc 𝐶)) → (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o suc 𝐶))) |
| 97 | 59, 88, 96 | mp2and 699 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o suc 𝐶)) |
| 98 | | oeord 8605 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖
2o)) → (𝑋
∈ suc 𝐶 ↔ (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o suc 𝐶))) |
| 99 | 43, 92, 51, 98 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋 ∈ suc 𝐶 ↔ (𝐴 ↑o 𝑋) ∈ (𝐴 ↑o suc 𝐶))) |
| 100 | 97, 99 | mpbird 257 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ suc 𝐶) |
| 101 | | onsssuc 6449 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ On ∧ 𝐶 ∈ On) → (𝑋 ⊆ 𝐶 ↔ 𝑋 ∈ suc 𝐶)) |
| 102 | 43, 4, 101 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋 ⊆ 𝐶 ↔ 𝑋 ∈ suc 𝐶)) |
| 103 | 100, 102 | mpbird 257 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ⊆ 𝐶) |
| 104 | 57, 103 | eqssd 3981 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 = 𝑋) |
| 105 | 104, 16 | jca 511 |
. . . . . . 7
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) |
| 106 | | simprl 770 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐶 = 𝑋) |
| 107 | 42 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝑋 ∈ On) |
| 108 | 106, 107 | eqeltrd 2835 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐶 ∈ On) |
| 109 | 2 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐴 ∈ On) |
| 110 | 109, 108,
5 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑o 𝐶) ∈ On) |
| 111 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐷 ∈ On) |
| 112 | 110, 111,
28 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ On) |
| 113 | | simplrl 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐸 ∈ (𝐴 ↑o 𝐶)) |
| 114 | 110, 113,
31 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐸 ∈ On) |
| 115 | 112, 114,
33 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑o 𝐶) ·o 𝐷) ⊆ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸)) |
| 116 | | simplrr 777 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) |
| 117 | 115, 116 | sseqtrd 4000 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑o 𝐶) ·o 𝐷) ⊆ 𝐵) |
| 118 | 40 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐵 ∈ (𝐴 ↑o suc 𝑋)) |
| 119 | | suceq 6424 |
. . . . . . . . . . . . . . 15
⊢ (𝐶 = 𝑋 → suc 𝐶 = suc 𝑋) |
| 120 | 119 | ad2antrl 728 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → suc 𝐶 = suc 𝑋) |
| 121 | 120 | oveq2d 7426 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑o suc 𝐶) = (𝐴 ↑o suc 𝑋)) |
| 122 | 109, 108,
86 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑o suc 𝐶) = ((𝐴 ↑o 𝐶) ·o 𝐴)) |
| 123 | 121, 122 | eqtr3d 2773 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑o suc 𝑋) = ((𝐴 ↑o 𝐶) ·o 𝐴)) |
| 124 | 118, 123 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐵 ∈ ((𝐴 ↑o 𝐶) ·o 𝐴)) |
| 125 | | omcl 8553 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ↑o 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴 ↑o 𝐶) ·o 𝐴) ∈ On) |
| 126 | 110, 109,
125 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑o 𝐶) ·o 𝐴) ∈ On) |
| 127 | | ontr2 6405 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ↑o 𝐶) ·o 𝐷) ∈ On ∧ ((𝐴 ↑o 𝐶) ·o 𝐴) ∈ On) → ((((𝐴 ↑o 𝐶) ·o 𝐷) ⊆ 𝐵 ∧ 𝐵 ∈ ((𝐴 ↑o 𝐶) ·o 𝐴)) → ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ ((𝐴 ↑o 𝐶) ·o 𝐴))) |
| 128 | 112, 126,
127 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((((𝐴 ↑o 𝐶) ·o 𝐷) ⊆ 𝐵 ∧ 𝐵 ∈ ((𝐴 ↑o 𝐶) ·o 𝐴)) → ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ ((𝐴 ↑o 𝐶) ·o 𝐴))) |
| 129 | 117, 124,
128 | mp2and 699 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ ((𝐴 ↑o 𝐶) ·o 𝐴)) |
| 130 | 66 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → ∅ ∈ 𝐴) |
| 131 | 130 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ∅ ∈ 𝐴) |
| 132 | 109, 108,
131, 68 | syl21anc 837 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ∅ ∈ (𝐴 ↑o 𝐶)) |
| 133 | | omord2 8584 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴 ↑o 𝐶) ∈ On) ∧ ∅
∈ (𝐴
↑o 𝐶))
→ (𝐷 ∈ 𝐴 ↔ ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ ((𝐴 ↑o 𝐶) ·o 𝐴))) |
| 134 | 111, 109,
110, 132, 133 | syl31anc 1375 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐷 ∈ 𝐴 ↔ ((𝐴 ↑o 𝐶) ·o 𝐷) ∈ ((𝐴 ↑o 𝐶) ·o 𝐴))) |
| 135 | 129, 134 | mpbird 257 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐷 ∈ 𝐴) |
| 136 | 106 | oveq2d 7426 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑o 𝐶) = (𝐴 ↑o 𝑋)) |
| 137 | 58 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑o 𝑋) ⊆ 𝐵) |
| 138 | 136, 137 | eqsstrd 3998 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐴 ↑o 𝐶) ⊆ 𝐵) |
| 139 | | eldifi 4111 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (On ∖
1o) → 𝐵
∈ On) |
| 140 | 139 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → 𝐵 ∈ On) |
| 141 | 140 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐵 ∈ On) |
| 142 | | ontri1 6391 |
. . . . . . . . . . . 12
⊢ (((𝐴 ↑o 𝐶) ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ↑o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ↑o 𝐶))) |
| 143 | 110, 141,
142 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴 ↑o 𝐶))) |
| 144 | 138, 143 | mpbid 232 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ¬ 𝐵 ∈ (𝐴 ↑o 𝐶)) |
| 145 | | om0 8534 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ↑o 𝐶) ∈ On → ((𝐴 ↑o 𝐶) ·o ∅)
= ∅) |
| 146 | 110, 145 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((𝐴 ↑o 𝐶) ·o ∅) =
∅) |
| 147 | 146 | oveq1d 7425 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (((𝐴 ↑o 𝐶) ·o ∅)
+o 𝐸) = (∅
+o 𝐸)) |
| 148 | | oa0r 8555 |
. . . . . . . . . . . . . . . 16
⊢ (𝐸 ∈ On → (∅
+o 𝐸) = 𝐸) |
| 149 | 114, 148 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (∅ +o
𝐸) = 𝐸) |
| 150 | 147, 149 | eqtrd 2771 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (((𝐴 ↑o 𝐶) ·o ∅)
+o 𝐸) = 𝐸) |
| 151 | 150, 113 | eqeltrd 2835 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (((𝐴 ↑o 𝐶) ·o ∅)
+o 𝐸) ∈
(𝐴 ↑o 𝐶)) |
| 152 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 = ∅ → ((𝐴 ↑o 𝐶) ·o 𝐷) = ((𝐴 ↑o 𝐶) ·o
∅)) |
| 153 | 152 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ (𝐷 = ∅ → (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴 ↑o 𝐶) ·o ∅)
+o 𝐸)) |
| 154 | 153 | eleq1d 2820 |
. . . . . . . . . . . . 13
⊢ (𝐷 = ∅ → ((((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴 ↑o 𝐶) ↔ (((𝐴 ↑o 𝐶) ·o ∅)
+o 𝐸) ∈
(𝐴 ↑o 𝐶))) |
| 155 | 151, 154 | syl5ibrcom 247 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐷 = ∅ → (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴 ↑o 𝐶))) |
| 156 | 116 | eleq1d 2820 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → ((((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴 ↑o 𝐶) ↔ 𝐵 ∈ (𝐴 ↑o 𝐶))) |
| 157 | 155, 156 | sylibd 239 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐷 = ∅ → 𝐵 ∈ (𝐴 ↑o 𝐶))) |
| 158 | 157 | necon3bd 2947 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (¬ 𝐵 ∈ (𝐴 ↑o 𝐶) → 𝐷 ≠ ∅)) |
| 159 | 144, 158 | mpd 15 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐷 ≠ ∅) |
| 160 | 135, 159,
10 | sylanbrc 583 |
. . . . . . . 8
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → 𝐷 ∈ (𝐴 ∖ 1o)) |
| 161 | 108, 160 | jca 511 |
. . . . . . 7
⊢ ((((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) |
| 162 | 105, 161 | impbida 800 |
. . . . . 6
⊢ (((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋 ∧ 𝐷 ∈ On))) |
| 163 | 162 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → ((𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋 ∧ 𝐷 ∈ On)))) |
| 164 | 163 | pm5.32rd 578 |
. . . 4
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ ((𝐶 = 𝑋 ∧ 𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))) |
| 165 | | anass 468 |
. . . 4
⊢ (((𝐶 = 𝑋 ∧ 𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))) |
| 166 | 164, 165 | bitrdi 287 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))) |
| 167 | | 3anass 1094 |
. . . . . 6
⊢ ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))) |
| 168 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝐶 = 𝑋 → (𝐴 ↑o 𝐶) = (𝐴 ↑o 𝑋)) |
| 169 | 168 | eleq2d 2821 |
. . . . . . 7
⊢ (𝐶 = 𝑋 → (𝐸 ∈ (𝐴 ↑o 𝐶) ↔ 𝐸 ∈ (𝐴 ↑o 𝑋))) |
| 170 | 168 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝐶 = 𝑋 → ((𝐴 ↑o 𝐶) ·o 𝐷) = ((𝐴 ↑o 𝑋) ·o 𝐷)) |
| 171 | 170 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝐶 = 𝑋 → (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸)) |
| 172 | 171 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝐶 = 𝑋 → ((((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵 ↔ (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)) |
| 173 | 169, 172 | 3anbi23d 1441 |
. . . . . 6
⊢ (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑o 𝑋) ∧ (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))) |
| 174 | 167, 173 | bitr3id 285 |
. . . . 5
⊢ (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑o 𝑋) ∧ (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))) |
| 175 | 2, 42, 89 | syl2anc 584 |
. . . . . 6
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → (𝐴 ↑o 𝑋) ∈ On) |
| 176 | | oen0 8603 |
. . . . . . . 8
⊢ (((𝐴 ∈ On ∧ 𝑋 ∈ On) ∧ ∅ ∈
𝐴) → ∅ ∈
(𝐴 ↑o 𝑋)) |
| 177 | 2, 42, 130, 176 | syl21anc 837 |
. . . . . . 7
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → ∅ ∈ (𝐴 ↑o 𝑋)) |
| 178 | 177 | ne0d 4322 |
. . . . . 6
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → (𝐴 ↑o 𝑋) ≠ ∅) |
| 179 | | omeu 8602 |
. . . . . . 7
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ↑o 𝑋) ≠ ∅) →
∃!𝑎∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑o 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)) |
| 180 | | oeeu.2 |
. . . . . . . . 9
⊢ 𝑃 = (℩𝑤∃𝑦 ∈ On ∃𝑧 ∈ (𝐴 ↑o 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵)) |
| 181 | | opeq1 4854 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → 〈𝑦, 𝑧〉 = 〈𝑑, 𝑧〉) |
| 182 | 181 | eqeq2d 2747 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → (𝑤 = 〈𝑦, 𝑧〉 ↔ 𝑤 = 〈𝑑, 𝑧〉)) |
| 183 | | oveq2 7418 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑑 → ((𝐴 ↑o 𝑋) ·o 𝑦) = ((𝐴 ↑o 𝑋) ·o 𝑑)) |
| 184 | 183 | oveq1d 7425 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑑 → (((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑧)) |
| 185 | 184 | eqeq1d 2738 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑑 → ((((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵 ↔ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵)) |
| 186 | 182, 185 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑑 → ((𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑤 = 〈𝑑, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵))) |
| 187 | | opeq2 4855 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑒 → 〈𝑑, 𝑧〉 = 〈𝑑, 𝑒〉) |
| 188 | 187 | eqeq2d 2747 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑒 → (𝑤 = 〈𝑑, 𝑧〉 ↔ 𝑤 = 〈𝑑, 𝑒〉)) |
| 189 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑒 → (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑧) = (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒)) |
| 190 | 189 | eqeq1d 2738 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑒 → ((((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵 ↔ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)) |
| 191 | 188, 190 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑒 → ((𝑤 = 〈𝑑, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵) ↔ (𝑤 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))) |
| 192 | 186, 191 | cbvrex2vw 3229 |
. . . . . . . . . . 11
⊢
(∃𝑦 ∈ On
∃𝑧 ∈ (𝐴 ↑o 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑o 𝑋)(𝑤 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)) |
| 193 | | eqeq1 2740 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑎 → (𝑤 = 〈𝑑, 𝑒〉 ↔ 𝑎 = 〈𝑑, 𝑒〉)) |
| 194 | 193 | anbi1d 631 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑎 → ((𝑤 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ (𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))) |
| 195 | 194 | 2rexbidv 3210 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑎 → (∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑o 𝑋)(𝑤 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑o 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))) |
| 196 | 192, 195 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑎 → (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴 ↑o 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑o 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))) |
| 197 | 196 | cbviotavw 6497 |
. . . . . . . . 9
⊢
(℩𝑤∃𝑦 ∈ On ∃𝑧 ∈ (𝐴 ↑o 𝑋)(𝑤 = 〈𝑦, 𝑧〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵)) = (℩𝑎∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑o 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)) |
| 198 | 180, 197 | eqtri 2759 |
. . . . . . . 8
⊢ 𝑃 = (℩𝑎∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑o 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)) |
| 199 | | oeeu.3 |
. . . . . . . 8
⊢ 𝑌 = (1st ‘𝑃) |
| 200 | | oeeu.4 |
. . . . . . . 8
⊢ 𝑍 = (2nd ‘𝑃) |
| 201 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → ((𝐴 ↑o 𝑋) ·o 𝑑) = ((𝐴 ↑o 𝑋) ·o 𝐷)) |
| 202 | 201 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝑒)) |
| 203 | 202 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵 ↔ (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵)) |
| 204 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝑒) = (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸)) |
| 205 | 204 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑒 = 𝐸 → ((((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵 ↔ (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)) |
| 206 | 198, 199,
200, 203, 205 | opiota 8063 |
. . . . . . 7
⊢
(∃!𝑎∃𝑑 ∈ On ∃𝑒 ∈ (𝐴 ↑o 𝑋)(𝑎 = 〈𝑑, 𝑒〉 ∧ (((𝐴 ↑o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑o 𝑋) ∧ (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 207 | 179, 206 | syl 17 |
. . . . . 6
⊢ (((𝐴 ↑o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴 ↑o 𝑋) ≠ ∅) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑o 𝑋) ∧ (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 208 | 175, 140,
178, 207 | syl3anc 1373 |
. . . . 5
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴 ↑o 𝑋) ∧ (((𝐴 ↑o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 209 | 174, 208 | sylan9bbr 510 |
. . . 4
⊢ (((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) ∧ 𝐶 = 𝑋) → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 210 | 209 | pm5.32da 579 |
. . 3
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → ((𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍)))) |
| 211 | 166, 210 | bitrd 279 |
. 2
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍)))) |
| 212 | | 3an4anass 1104 |
. 2
⊢ (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴 ↑o 𝐶)) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴 ↑o 𝐶) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))) |
| 213 | | 3anass 1094 |
. 2
⊢ ((𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |
| 214 | 211, 212,
213 | 3bitr4g 314 |
1
⊢ ((𝐴 ∈ (On ∖
2o) ∧ 𝐵
∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴 ↑o 𝐶)) ∧ (((𝐴 ↑o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋 ∧ 𝐷 = 𝑌 ∧ 𝐸 = 𝑍))) |