MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeui Structured version   Visualization version   GIF version

Theorem oeeui 8569
Description: The division algorithm for ordinal exponentiation. (This version of oeeu 8570 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 8552.) (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
oeeu.2 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵))
oeeu.3 𝑌 = (1st𝑃)
oeeu.4 𝑍 = (2nd𝑃)
Assertion
Ref Expression
oeeui ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oeeui
Dummy variables 𝑎 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4097 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
21adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐴 ∈ On)
32ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ On)
4 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ On)
5 oecl 8504 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
63, 4, 5syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ∈ On)
7 om1 8509 . . . . . . . . . . . . . . 15 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
86, 7syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
9 df1o2 8444 . . . . . . . . . . . . . . . 16 1o = {∅}
10 dif1o 8467 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (𝐴 ∖ 1o) ↔ (𝐷𝐴𝐷 ≠ ∅))
1110simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷 ≠ ∅)
1211ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ≠ ∅)
13 eldifi 4097 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷𝐴)
1413ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷𝐴)
15 onelon 6360 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝐷𝐴) → 𝐷 ∈ On)
163, 14, 15syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ∈ On)
17 on0eln0 6392 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ On → (∅ ∈ 𝐷𝐷 ≠ ∅))
1816, 17syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (∅ ∈ 𝐷𝐷 ≠ ∅))
1912, 18mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ 𝐷)
2019snssd 4776 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → {∅} ⊆ 𝐷)
219, 20eqsstrid 3988 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 1o𝐷)
22 1on 8449 . . . . . . . . . . . . . . . . 17 1o ∈ On
2322a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 1o ∈ On)
24 omwordi 8538 . . . . . . . . . . . . . . . 16 ((1o ∈ On ∧ 𝐷 ∈ On ∧ (𝐴o 𝐶) ∈ On) → (1o𝐷 → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷)))
2523, 16, 6, 24syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (1o𝐷 → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷)))
2621, 25mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷))
278, 26eqsstrrd 3985 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ⊆ ((𝐴o 𝐶) ·o 𝐷))
28 omcl 8503 . . . . . . . . . . . . . . . 16 (((𝐴o 𝐶) ∈ On ∧ 𝐷 ∈ On) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
296, 16, 28syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
30 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ (𝐴o 𝐶))
31 onelon 6360 . . . . . . . . . . . . . . . 16 (((𝐴o 𝐶) ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶)) → 𝐸 ∈ On)
326, 30, 31syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ On)
33 oaword1 8519 . . . . . . . . . . . . . . 15 ((((𝐴o 𝐶) ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
3429, 32, 33syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
35 simplrr 777 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)
3634, 35sseqtrd 3986 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵)
3727, 36sstrd 3960 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ⊆ 𝐵)
38 oeeu.1 . . . . . . . . . . . . . . 15 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
3938oeeulem 8568 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
4039simp3d 1144 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝑋))
4140ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴o suc 𝑋))
4239simp1d 1142 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ On)
4342ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ On)
44 onsuc 7790 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → suc 𝑋 ∈ On)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝑋 ∈ On)
46 oecl 8504 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝑋 ∈ On) → (𝐴o suc 𝑋) ∈ On)
473, 45, 46syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝑋) ∈ On)
48 ontr2 6383 . . . . . . . . . . . . 13 (((𝐴o 𝐶) ∈ On ∧ (𝐴o suc 𝑋) ∈ On) → (((𝐴o 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
496, 47, 48syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
5037, 41, 49mp2and 699 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋))
51 simplll 774 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ (On ∖ 2o))
52 oeord 8555 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐶 ∈ suc 𝑋 ↔ (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
534, 45, 51, 52syl3anc 1373 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 ∈ suc 𝑋 ↔ (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
5450, 53mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ suc 𝑋)
55 onsssuc 6427 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋𝐶 ∈ suc 𝑋))
564, 43, 55syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶𝑋𝐶 ∈ suc 𝑋))
5754, 56mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶𝑋)
5839simp2d 1143 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ⊆ 𝐵)
5958ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ⊆ 𝐵)
60 eloni 6345 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → Ord 𝐴)
613, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → Ord 𝐴)
62 ordsucss 7796 . . . . . . . . . . . . . . . 16 (Ord 𝐴 → (𝐷𝐴 → suc 𝐷𝐴))
6361, 14, 62sylc 65 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷𝐴)
64 onsuc 7790 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ On → suc 𝐷 ∈ On)
6516, 64syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷 ∈ On)
66 dif20el 8472 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
6751, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ 𝐴)
68 oen0 8553 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐶))
693, 4, 67, 68syl21anc 837 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ (𝐴o 𝐶))
70 omword 8537 . . . . . . . . . . . . . . . 16 (((suc 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o 𝐶) ∈ On) ∧ ∅ ∈ (𝐴o 𝐶)) → (suc 𝐷𝐴 ↔ ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴)))
7165, 3, 6, 69, 70syl31anc 1375 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (suc 𝐷𝐴 ↔ ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴)))
7263, 71mpbid 232 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴))
73 oaord 8514 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ On ∧ (𝐴o 𝐶) ∈ On ∧ ((𝐴o 𝐶) ·o 𝐷) ∈ On) → (𝐸 ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶))))
7432, 6, 29, 73syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐸 ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶))))
7530, 74mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
7635, 75eqeltrrd 2830 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
77 odi 8546 . . . . . . . . . . . . . . . . 17 (((𝐴o 𝐶) ∈ On ∧ 𝐷 ∈ On ∧ 1o ∈ On) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)))
786, 16, 23, 77syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)))
79 oa1suc 8498 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ On → (𝐷 +o 1o) = suc 𝐷)
8016, 79syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐷 +o 1o) = suc 𝐷)
8180oveq2d 7406 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = ((𝐴o 𝐶) ·o suc 𝐷))
828oveq2d 7406 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
8378, 81, 823eqtr3d 2773 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o suc 𝐷) = (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
8476, 83eleqtrrd 2832 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴o 𝐶) ·o suc 𝐷))
8572, 84sseldd 3950 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴))
86 oesuc 8494 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
873, 4, 86syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
8885, 87eleqtrrd 2832 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴o suc 𝐶))
89 oecl 8504 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
903, 43, 89syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ∈ On)
91 onsuc 7790 . . . . . . . . . . . . . . 15 (𝐶 ∈ On → suc 𝐶 ∈ On)
9291ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐶 ∈ On)
93 oecl 8504 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴o suc 𝐶) ∈ On)
943, 92, 93syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝐶) ∈ On)
95 ontr2 6383 . . . . . . . . . . . . 13 (((𝐴o 𝑋) ∈ On ∧ (𝐴o suc 𝐶) ∈ On) → (((𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝐶)) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9690, 94, 95syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝐶)) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9759, 88, 96mp2and 699 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶))
98 oeord 8555 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑋 ∈ suc 𝐶 ↔ (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9943, 92, 51, 98syl3anc 1373 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋 ∈ suc 𝐶 ↔ (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
10097, 99mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ suc 𝐶)
101 onsssuc 6427 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝐶 ∈ On) → (𝑋𝐶𝑋 ∈ suc 𝐶))
10243, 4, 101syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋𝐶𝑋 ∈ suc 𝐶))
103100, 102mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋𝐶)
10457, 103eqssd 3967 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 = 𝑋)
105104, 16jca 511 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 = 𝑋𝐷 ∈ On))
106 simprl 770 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 = 𝑋)
10742ad2antrr 726 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝑋 ∈ On)
108106, 107eqeltrd 2829 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 ∈ On)
1092ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐴 ∈ On)
110109, 108, 5syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) ∈ On)
111 simprr 772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ On)
112110, 111, 28syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
113 simplrl 776 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ (𝐴o 𝐶))
114110, 113, 31syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ On)
115112, 114, 33syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
116 simplrr 777 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)
117115, 116sseqtrd 3986 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵)
11840ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ (𝐴o suc 𝑋))
119 suceq 6403 . . . . . . . . . . . . . . 15 (𝐶 = 𝑋 → suc 𝐶 = suc 𝑋)
120119ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → suc 𝐶 = suc 𝑋)
121120oveq2d 7406 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝐶) = (𝐴o suc 𝑋))
122109, 108, 86syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
123121, 122eqtr3d 2767 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝑋) = ((𝐴o 𝐶) ·o 𝐴))
124118, 123eleqtrd 2831 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴))
125 omcl 8503 . . . . . . . . . . . . 13 (((𝐴o 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝐶) ·o 𝐴) ∈ On)
126110, 109, 125syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐴) ∈ On)
127 ontr2 6383 . . . . . . . . . . . 12 ((((𝐴o 𝐶) ·o 𝐷) ∈ On ∧ ((𝐴o 𝐶) ·o 𝐴) ∈ On) → ((((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
128112, 126, 127syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
129117, 124, 128mp2and 699 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴))
13066adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∅ ∈ 𝐴)
131130ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ 𝐴)
132109, 108, 131, 68syl21anc 837 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ (𝐴o 𝐶))
133 omord2 8534 . . . . . . . . . . 11 (((𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o 𝐶) ∈ On) ∧ ∅ ∈ (𝐴o 𝐶)) → (𝐷𝐴 ↔ ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
134111, 109, 110, 132, 133syl31anc 1375 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷𝐴 ↔ ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
135129, 134mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷𝐴)
136106oveq2d 7406 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) = (𝐴o 𝑋))
13758ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝑋) ⊆ 𝐵)
138136, 137eqsstrd 3984 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) ⊆ 𝐵)
139 eldifi 4097 . . . . . . . . . . . . . 14 (𝐵 ∈ (On ∖ 1o) → 𝐵 ∈ On)
140139adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ On)
141140ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ On)
142 ontri1 6369 . . . . . . . . . . . 12 (((𝐴o 𝐶) ∈ On ∧ 𝐵 ∈ On) → ((𝐴o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝐶)))
143110, 141, 142syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝐶)))
144138, 143mpbid 232 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ¬ 𝐵 ∈ (𝐴o 𝐶))
145 om0 8484 . . . . . . . . . . . . . . . . 17 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146110, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o ∅) = ∅)
147146oveq1d 7405 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) = (∅ +o 𝐸))
148 oa0r 8505 . . . . . . . . . . . . . . . 16 (𝐸 ∈ On → (∅ +o 𝐸) = 𝐸)
149114, 148syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (∅ +o 𝐸) = 𝐸)
150147, 149eqtrd 2765 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) = 𝐸)
151150, 113eqeltrd 2829 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) ∈ (𝐴o 𝐶))
152 oveq2 7398 . . . . . . . . . . . . . . 15 (𝐷 = ∅ → ((𝐴o 𝐶) ·o 𝐷) = ((𝐴o 𝐶) ·o ∅))
153152oveq1d 7405 . . . . . . . . . . . . . 14 (𝐷 = ∅ → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴o 𝐶) ·o ∅) +o 𝐸))
154153eleq1d 2814 . . . . . . . . . . . . 13 (𝐷 = ∅ → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o ∅) +o 𝐸) ∈ (𝐴o 𝐶)))
155151, 154syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶)))
156116eleq1d 2814 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶) ↔ 𝐵 ∈ (𝐴o 𝐶)))
157155, 156sylibd 239 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → 𝐵 ∈ (𝐴o 𝐶)))
158157necon3bd 2940 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (¬ 𝐵 ∈ (𝐴o 𝐶) → 𝐷 ≠ ∅))
159144, 158mpd 15 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ≠ ∅)
160135, 159, 10sylanbrc 583 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ (𝐴 ∖ 1o))
161108, 160jca 511 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)))
162105, 161impbida 800 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋𝐷 ∈ On)))
163162ex 412 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋𝐷 ∈ On))))
164163pm5.32rd 578 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ ((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))
165 anass 468 . . . 4 (((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))
166164, 165bitrdi 287 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))))
167 3anass 1094 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))
168 oveq2 7398 . . . . . . . 8 (𝐶 = 𝑋 → (𝐴o 𝐶) = (𝐴o 𝑋))
169168eleq2d 2815 . . . . . . 7 (𝐶 = 𝑋 → (𝐸 ∈ (𝐴o 𝐶) ↔ 𝐸 ∈ (𝐴o 𝑋)))
170168oveq1d 7405 . . . . . . . . 9 (𝐶 = 𝑋 → ((𝐴o 𝐶) ·o 𝐷) = ((𝐴o 𝑋) ·o 𝐷))
171170oveq1d 7405 . . . . . . . 8 (𝐶 = 𝑋 → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴o 𝑋) ·o 𝐷) +o 𝐸))
172171eqeq1d 2732 . . . . . . 7 (𝐶 = 𝑋 → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))
173169, 1723anbi23d 1441 . . . . . 6 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)))
174167, 173bitr3id 285 . . . . 5 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)))
1752, 42, 89syl2anc 584 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ∈ On)
176 oen0 8553 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑋 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝑋))
1772, 42, 130, 176syl21anc 837 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∅ ∈ (𝐴o 𝑋))
178177ne0d 4308 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ≠ ∅)
179 omeu 8552 . . . . . . 7 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴o 𝑋) ≠ ∅) → ∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
180 oeeu.2 . . . . . . . . 9 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵))
181 opeq1 4840 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → ⟨𝑦, 𝑧⟩ = ⟨𝑑, 𝑧⟩)
182181eqeq2d 2741 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → (𝑤 = ⟨𝑦, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑧⟩))
183 oveq2 7398 . . . . . . . . . . . . . . 15 (𝑦 = 𝑑 → ((𝐴o 𝑋) ·o 𝑦) = ((𝐴o 𝑋) ·o 𝑑))
184183oveq1d 7405 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = (((𝐴o 𝑋) ·o 𝑑) +o 𝑧))
185184eqeq1d 2732 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → ((((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵))
186182, 185anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑑 → ((𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵)))
187 opeq2 4841 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → ⟨𝑑, 𝑧⟩ = ⟨𝑑, 𝑒⟩)
188187eqeq2d 2741 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → (𝑤 = ⟨𝑑, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑒⟩))
189 oveq2 7398 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = (((𝐴o 𝑋) ·o 𝑑) +o 𝑒))
190189eqeq1d 2732 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → ((((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
191188, 190anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑒 → ((𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
192186, 191cbvrex2vw 3221 . . . . . . . . . . 11 (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
193 eqeq1 2734 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → (𝑤 = ⟨𝑑, 𝑒⟩ ↔ 𝑎 = ⟨𝑑, 𝑒⟩))
194193anbi1d 631 . . . . . . . . . . . 12 (𝑤 = 𝑎 → ((𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ (𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
1951942rexbidv 3203 . . . . . . . . . . 11 (𝑤 = 𝑎 → (∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
196192, 195bitrid 283 . . . . . . . . . 10 (𝑤 = 𝑎 → (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
197196cbviotavw 6475 . . . . . . . . 9 (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵)) = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
198180, 197eqtri 2753 . . . . . . . 8 𝑃 = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
199 oeeu.3 . . . . . . . 8 𝑌 = (1st𝑃)
200 oeeu.4 . . . . . . . 8 𝑍 = (2nd𝑃)
201 oveq2 7398 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝐴o 𝑋) ·o 𝑑) = ((𝐴o 𝑋) ·o 𝐷))
202201oveq1d 7405 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = (((𝐴o 𝑋) ·o 𝐷) +o 𝑒))
203202eqeq1d 2732 . . . . . . . 8 (𝑑 = 𝐷 → ((((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵))
204 oveq2 7398 . . . . . . . . 9 (𝑒 = 𝐸 → (((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = (((𝐴o 𝑋) ·o 𝐷) +o 𝐸))
205204eqeq1d 2732 . . . . . . . 8 (𝑒 = 𝐸 → ((((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))
206198, 199, 200, 203, 205opiota 8041 . . . . . . 7 (∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
207179, 206syl 17 . . . . . 6 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴o 𝑋) ≠ ∅) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
208175, 140, 178, 207syl3anc 1373 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
209174, 208sylan9bbr 510 . . . 4 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ 𝐶 = 𝑋) → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
210209pm5.32da 579 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
211166, 210bitrd 279 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
212 3an4anass 1104 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))
213 3anass 1094 . 2 ((𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍)))
214211, 212, 2133bitr4g 314 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃!weu 2562  wne 2926  wrex 3054  {crab 3408  cdif 3914  wss 3917  c0 4299  {csn 4592  cop 4598   cuni 4874   cint 4913  Ord word 6334  Oncon0 6335  suc csuc 6337  cio 6465  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  1oc1o 8430  2oc2o 8431   +o coa 8434   ·o comu 8435  o coe 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443
This theorem is referenced by:  oeeu  8570  cantnflem3  9651  cantnflem4  9652
  Copyright terms: Public domain W3C validator