MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeui Structured version   Visualization version   GIF version

Theorem oeeui 8612
Description: The division algorithm for ordinal exponentiation. (This version of oeeu 8613 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 8595.) (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
oeeu.2 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵))
oeeu.3 𝑌 = (1st𝑃)
oeeu.4 𝑍 = (2nd𝑃)
Assertion
Ref Expression
oeeui ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oeeui
Dummy variables 𝑎 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4106 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
21adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐴 ∈ On)
32ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ On)
4 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ On)
5 oecl 8547 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
63, 4, 5syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ∈ On)
7 om1 8552 . . . . . . . . . . . . . . 15 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
86, 7syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
9 df1o2 8485 . . . . . . . . . . . . . . . 16 1o = {∅}
10 dif1o 8510 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (𝐴 ∖ 1o) ↔ (𝐷𝐴𝐷 ≠ ∅))
1110simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷 ≠ ∅)
1211ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ≠ ∅)
13 eldifi 4106 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷𝐴)
1413ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷𝐴)
15 onelon 6377 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝐷𝐴) → 𝐷 ∈ On)
163, 14, 15syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ∈ On)
17 on0eln0 6409 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ On → (∅ ∈ 𝐷𝐷 ≠ ∅))
1816, 17syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (∅ ∈ 𝐷𝐷 ≠ ∅))
1912, 18mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ 𝐷)
2019snssd 4785 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → {∅} ⊆ 𝐷)
219, 20eqsstrid 3997 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 1o𝐷)
22 1on 8490 . . . . . . . . . . . . . . . . 17 1o ∈ On
2322a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 1o ∈ On)
24 omwordi 8581 . . . . . . . . . . . . . . . 16 ((1o ∈ On ∧ 𝐷 ∈ On ∧ (𝐴o 𝐶) ∈ On) → (1o𝐷 → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷)))
2523, 16, 6, 24syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (1o𝐷 → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷)))
2621, 25mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷))
278, 26eqsstrrd 3994 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ⊆ ((𝐴o 𝐶) ·o 𝐷))
28 omcl 8546 . . . . . . . . . . . . . . . 16 (((𝐴o 𝐶) ∈ On ∧ 𝐷 ∈ On) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
296, 16, 28syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
30 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ (𝐴o 𝐶))
31 onelon 6377 . . . . . . . . . . . . . . . 16 (((𝐴o 𝐶) ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶)) → 𝐸 ∈ On)
326, 30, 31syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ On)
33 oaword1 8562 . . . . . . . . . . . . . . 15 ((((𝐴o 𝐶) ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
3429, 32, 33syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
35 simplrr 777 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)
3634, 35sseqtrd 3995 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵)
3727, 36sstrd 3969 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ⊆ 𝐵)
38 oeeu.1 . . . . . . . . . . . . . . 15 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
3938oeeulem 8611 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
4039simp3d 1144 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝑋))
4140ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴o suc 𝑋))
4239simp1d 1142 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ On)
4342ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ On)
44 onsuc 7803 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → suc 𝑋 ∈ On)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝑋 ∈ On)
46 oecl 8547 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝑋 ∈ On) → (𝐴o suc 𝑋) ∈ On)
473, 45, 46syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝑋) ∈ On)
48 ontr2 6400 . . . . . . . . . . . . 13 (((𝐴o 𝐶) ∈ On ∧ (𝐴o suc 𝑋) ∈ On) → (((𝐴o 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
496, 47, 48syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
5037, 41, 49mp2and 699 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋))
51 simplll 774 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ (On ∖ 2o))
52 oeord 8598 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐶 ∈ suc 𝑋 ↔ (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
534, 45, 51, 52syl3anc 1373 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 ∈ suc 𝑋 ↔ (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
5450, 53mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ suc 𝑋)
55 onsssuc 6443 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋𝐶 ∈ suc 𝑋))
564, 43, 55syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶𝑋𝐶 ∈ suc 𝑋))
5754, 56mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶𝑋)
5839simp2d 1143 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ⊆ 𝐵)
5958ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ⊆ 𝐵)
60 eloni 6362 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → Ord 𝐴)
613, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → Ord 𝐴)
62 ordsucss 7810 . . . . . . . . . . . . . . . 16 (Ord 𝐴 → (𝐷𝐴 → suc 𝐷𝐴))
6361, 14, 62sylc 65 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷𝐴)
64 onsuc 7803 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ On → suc 𝐷 ∈ On)
6516, 64syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷 ∈ On)
66 dif20el 8515 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
6751, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ 𝐴)
68 oen0 8596 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐶))
693, 4, 67, 68syl21anc 837 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ (𝐴o 𝐶))
70 omword 8580 . . . . . . . . . . . . . . . 16 (((suc 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o 𝐶) ∈ On) ∧ ∅ ∈ (𝐴o 𝐶)) → (suc 𝐷𝐴 ↔ ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴)))
7165, 3, 6, 69, 70syl31anc 1375 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (suc 𝐷𝐴 ↔ ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴)))
7263, 71mpbid 232 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴))
73 oaord 8557 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ On ∧ (𝐴o 𝐶) ∈ On ∧ ((𝐴o 𝐶) ·o 𝐷) ∈ On) → (𝐸 ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶))))
7432, 6, 29, 73syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐸 ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶))))
7530, 74mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
7635, 75eqeltrrd 2835 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
77 odi 8589 . . . . . . . . . . . . . . . . 17 (((𝐴o 𝐶) ∈ On ∧ 𝐷 ∈ On ∧ 1o ∈ On) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)))
786, 16, 23, 77syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)))
79 oa1suc 8541 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ On → (𝐷 +o 1o) = suc 𝐷)
8016, 79syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐷 +o 1o) = suc 𝐷)
8180oveq2d 7419 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = ((𝐴o 𝐶) ·o suc 𝐷))
828oveq2d 7419 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
8378, 81, 823eqtr3d 2778 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o suc 𝐷) = (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
8476, 83eleqtrrd 2837 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴o 𝐶) ·o suc 𝐷))
8572, 84sseldd 3959 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴))
86 oesuc 8537 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
873, 4, 86syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
8885, 87eleqtrrd 2837 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴o suc 𝐶))
89 oecl 8547 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
903, 43, 89syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ∈ On)
91 onsuc 7803 . . . . . . . . . . . . . . 15 (𝐶 ∈ On → suc 𝐶 ∈ On)
9291ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐶 ∈ On)
93 oecl 8547 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴o suc 𝐶) ∈ On)
943, 92, 93syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝐶) ∈ On)
95 ontr2 6400 . . . . . . . . . . . . 13 (((𝐴o 𝑋) ∈ On ∧ (𝐴o suc 𝐶) ∈ On) → (((𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝐶)) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9690, 94, 95syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝐶)) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9759, 88, 96mp2and 699 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶))
98 oeord 8598 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑋 ∈ suc 𝐶 ↔ (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9943, 92, 51, 98syl3anc 1373 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋 ∈ suc 𝐶 ↔ (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
10097, 99mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ suc 𝐶)
101 onsssuc 6443 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝐶 ∈ On) → (𝑋𝐶𝑋 ∈ suc 𝐶))
10243, 4, 101syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋𝐶𝑋 ∈ suc 𝐶))
103100, 102mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋𝐶)
10457, 103eqssd 3976 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 = 𝑋)
105104, 16jca 511 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 = 𝑋𝐷 ∈ On))
106 simprl 770 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 = 𝑋)
10742ad2antrr 726 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝑋 ∈ On)
108106, 107eqeltrd 2834 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 ∈ On)
1092ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐴 ∈ On)
110109, 108, 5syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) ∈ On)
111 simprr 772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ On)
112110, 111, 28syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
113 simplrl 776 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ (𝐴o 𝐶))
114110, 113, 31syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ On)
115112, 114, 33syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
116 simplrr 777 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)
117115, 116sseqtrd 3995 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵)
11840ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ (𝐴o suc 𝑋))
119 suceq 6419 . . . . . . . . . . . . . . 15 (𝐶 = 𝑋 → suc 𝐶 = suc 𝑋)
120119ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → suc 𝐶 = suc 𝑋)
121120oveq2d 7419 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝐶) = (𝐴o suc 𝑋))
122109, 108, 86syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
123121, 122eqtr3d 2772 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝑋) = ((𝐴o 𝐶) ·o 𝐴))
124118, 123eleqtrd 2836 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴))
125 omcl 8546 . . . . . . . . . . . . 13 (((𝐴o 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝐶) ·o 𝐴) ∈ On)
126110, 109, 125syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐴) ∈ On)
127 ontr2 6400 . . . . . . . . . . . 12 ((((𝐴o 𝐶) ·o 𝐷) ∈ On ∧ ((𝐴o 𝐶) ·o 𝐴) ∈ On) → ((((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
128112, 126, 127syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
129117, 124, 128mp2and 699 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴))
13066adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∅ ∈ 𝐴)
131130ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ 𝐴)
132109, 108, 131, 68syl21anc 837 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ (𝐴o 𝐶))
133 omord2 8577 . . . . . . . . . . 11 (((𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o 𝐶) ∈ On) ∧ ∅ ∈ (𝐴o 𝐶)) → (𝐷𝐴 ↔ ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
134111, 109, 110, 132, 133syl31anc 1375 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷𝐴 ↔ ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
135129, 134mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷𝐴)
136106oveq2d 7419 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) = (𝐴o 𝑋))
13758ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝑋) ⊆ 𝐵)
138136, 137eqsstrd 3993 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) ⊆ 𝐵)
139 eldifi 4106 . . . . . . . . . . . . . 14 (𝐵 ∈ (On ∖ 1o) → 𝐵 ∈ On)
140139adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ On)
141140ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ On)
142 ontri1 6386 . . . . . . . . . . . 12 (((𝐴o 𝐶) ∈ On ∧ 𝐵 ∈ On) → ((𝐴o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝐶)))
143110, 141, 142syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝐶)))
144138, 143mpbid 232 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ¬ 𝐵 ∈ (𝐴o 𝐶))
145 om0 8527 . . . . . . . . . . . . . . . . 17 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146110, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o ∅) = ∅)
147146oveq1d 7418 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) = (∅ +o 𝐸))
148 oa0r 8548 . . . . . . . . . . . . . . . 16 (𝐸 ∈ On → (∅ +o 𝐸) = 𝐸)
149114, 148syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (∅ +o 𝐸) = 𝐸)
150147, 149eqtrd 2770 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) = 𝐸)
151150, 113eqeltrd 2834 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) ∈ (𝐴o 𝐶))
152 oveq2 7411 . . . . . . . . . . . . . . 15 (𝐷 = ∅ → ((𝐴o 𝐶) ·o 𝐷) = ((𝐴o 𝐶) ·o ∅))
153152oveq1d 7418 . . . . . . . . . . . . . 14 (𝐷 = ∅ → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴o 𝐶) ·o ∅) +o 𝐸))
154153eleq1d 2819 . . . . . . . . . . . . 13 (𝐷 = ∅ → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o ∅) +o 𝐸) ∈ (𝐴o 𝐶)))
155151, 154syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶)))
156116eleq1d 2819 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶) ↔ 𝐵 ∈ (𝐴o 𝐶)))
157155, 156sylibd 239 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → 𝐵 ∈ (𝐴o 𝐶)))
158157necon3bd 2946 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (¬ 𝐵 ∈ (𝐴o 𝐶) → 𝐷 ≠ ∅))
159144, 158mpd 15 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ≠ ∅)
160135, 159, 10sylanbrc 583 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ (𝐴 ∖ 1o))
161108, 160jca 511 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)))
162105, 161impbida 800 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋𝐷 ∈ On)))
163162ex 412 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋𝐷 ∈ On))))
164163pm5.32rd 578 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ ((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))
165 anass 468 . . . 4 (((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))
166164, 165bitrdi 287 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))))
167 3anass 1094 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))
168 oveq2 7411 . . . . . . . 8 (𝐶 = 𝑋 → (𝐴o 𝐶) = (𝐴o 𝑋))
169168eleq2d 2820 . . . . . . 7 (𝐶 = 𝑋 → (𝐸 ∈ (𝐴o 𝐶) ↔ 𝐸 ∈ (𝐴o 𝑋)))
170168oveq1d 7418 . . . . . . . . 9 (𝐶 = 𝑋 → ((𝐴o 𝐶) ·o 𝐷) = ((𝐴o 𝑋) ·o 𝐷))
171170oveq1d 7418 . . . . . . . 8 (𝐶 = 𝑋 → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴o 𝑋) ·o 𝐷) +o 𝐸))
172171eqeq1d 2737 . . . . . . 7 (𝐶 = 𝑋 → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))
173169, 1723anbi23d 1441 . . . . . 6 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)))
174167, 173bitr3id 285 . . . . 5 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)))
1752, 42, 89syl2anc 584 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ∈ On)
176 oen0 8596 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑋 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝑋))
1772, 42, 130, 176syl21anc 837 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∅ ∈ (𝐴o 𝑋))
178177ne0d 4317 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ≠ ∅)
179 omeu 8595 . . . . . . 7 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴o 𝑋) ≠ ∅) → ∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
180 oeeu.2 . . . . . . . . 9 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵))
181 opeq1 4849 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → ⟨𝑦, 𝑧⟩ = ⟨𝑑, 𝑧⟩)
182181eqeq2d 2746 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → (𝑤 = ⟨𝑦, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑧⟩))
183 oveq2 7411 . . . . . . . . . . . . . . 15 (𝑦 = 𝑑 → ((𝐴o 𝑋) ·o 𝑦) = ((𝐴o 𝑋) ·o 𝑑))
184183oveq1d 7418 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = (((𝐴o 𝑋) ·o 𝑑) +o 𝑧))
185184eqeq1d 2737 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → ((((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵))
186182, 185anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑑 → ((𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵)))
187 opeq2 4850 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → ⟨𝑑, 𝑧⟩ = ⟨𝑑, 𝑒⟩)
188187eqeq2d 2746 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → (𝑤 = ⟨𝑑, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑒⟩))
189 oveq2 7411 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = (((𝐴o 𝑋) ·o 𝑑) +o 𝑒))
190189eqeq1d 2737 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → ((((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
191188, 190anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑒 → ((𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
192186, 191cbvrex2vw 3225 . . . . . . . . . . 11 (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
193 eqeq1 2739 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → (𝑤 = ⟨𝑑, 𝑒⟩ ↔ 𝑎 = ⟨𝑑, 𝑒⟩))
194193anbi1d 631 . . . . . . . . . . . 12 (𝑤 = 𝑎 → ((𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ (𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
1951942rexbidv 3206 . . . . . . . . . . 11 (𝑤 = 𝑎 → (∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
196192, 195bitrid 283 . . . . . . . . . 10 (𝑤 = 𝑎 → (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
197196cbviotavw 6491 . . . . . . . . 9 (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵)) = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
198180, 197eqtri 2758 . . . . . . . 8 𝑃 = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
199 oeeu.3 . . . . . . . 8 𝑌 = (1st𝑃)
200 oeeu.4 . . . . . . . 8 𝑍 = (2nd𝑃)
201 oveq2 7411 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝐴o 𝑋) ·o 𝑑) = ((𝐴o 𝑋) ·o 𝐷))
202201oveq1d 7418 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = (((𝐴o 𝑋) ·o 𝐷) +o 𝑒))
203202eqeq1d 2737 . . . . . . . 8 (𝑑 = 𝐷 → ((((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵))
204 oveq2 7411 . . . . . . . . 9 (𝑒 = 𝐸 → (((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = (((𝐴o 𝑋) ·o 𝐷) +o 𝐸))
205204eqeq1d 2737 . . . . . . . 8 (𝑒 = 𝐸 → ((((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))
206198, 199, 200, 203, 205opiota 8056 . . . . . . 7 (∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
207179, 206syl 17 . . . . . 6 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴o 𝑋) ≠ ∅) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
208175, 140, 178, 207syl3anc 1373 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
209174, 208sylan9bbr 510 . . . 4 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ 𝐶 = 𝑋) → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
210209pm5.32da 579 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
211166, 210bitrd 279 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
212 3an4anass 1104 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))
213 3anass 1094 . 2 ((𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍)))
214211, 212, 2133bitr4g 314 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  ∃!weu 2567  wne 2932  wrex 3060  {crab 3415  cdif 3923  wss 3926  c0 4308  {csn 4601  cop 4607   cuni 4883   cint 4922  Ord word 6351  Oncon0 6352  suc csuc 6354  cio 6481  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  1oc1o 8471  2oc2o 8472   +o coa 8475   ·o comu 8476  o coe 8477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-oadd 8482  df-omul 8483  df-oexp 8484
This theorem is referenced by:  oeeu  8613  cantnflem3  9703  cantnflem4  9704
  Copyright terms: Public domain W3C validator