MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oeeui Structured version   Visualization version   GIF version

Theorem oeeui 8523
Description: The division algorithm for ordinal exponentiation. (This version of oeeu 8524 gives an explicit expression for the unique solution of the equation, in terms of the solution 𝑃 to omeu 8506.) (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
oeeu.1 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
oeeu.2 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵))
oeeu.3 𝑌 = (1st𝑃)
oeeu.4 𝑍 = (2nd𝑃)
Assertion
Ref Expression
oeeui ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝑧,𝐴   𝑤,𝐵,𝑥,𝑦,𝑧   𝑤,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤)   𝐷(𝑥,𝑦,𝑧,𝑤)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝐸(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑥)   𝑌(𝑥,𝑦,𝑧,𝑤)   𝑍(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem oeeui
Dummy variables 𝑎 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4080 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → 𝐴 ∈ On)
21adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐴 ∈ On)
32ad2antrr 726 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ On)
4 simprl 770 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ On)
5 oecl 8458 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o 𝐶) ∈ On)
63, 4, 5syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ∈ On)
7 om1 8463 . . . . . . . . . . . . . . 15 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
86, 7syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 1o) = (𝐴o 𝐶))
9 df1o2 8398 . . . . . . . . . . . . . . . 16 1o = {∅}
10 dif1o 8421 . . . . . . . . . . . . . . . . . . . 20 (𝐷 ∈ (𝐴 ∖ 1o) ↔ (𝐷𝐴𝐷 ≠ ∅))
1110simprbi 496 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷 ≠ ∅)
1211ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ≠ ∅)
13 eldifi 4080 . . . . . . . . . . . . . . . . . . . . 21 (𝐷 ∈ (𝐴 ∖ 1o) → 𝐷𝐴)
1413ad2antll 729 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷𝐴)
15 onelon 6336 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ 𝐷𝐴) → 𝐷 ∈ On)
163, 14, 15syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐷 ∈ On)
17 on0eln0 6368 . . . . . . . . . . . . . . . . . . 19 (𝐷 ∈ On → (∅ ∈ 𝐷𝐷 ≠ ∅))
1816, 17syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (∅ ∈ 𝐷𝐷 ≠ ∅))
1912, 18mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ 𝐷)
2019snssd 4760 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → {∅} ⊆ 𝐷)
219, 20eqsstrid 3969 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 1o𝐷)
22 1on 8403 . . . . . . . . . . . . . . . . 17 1o ∈ On
2322a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 1o ∈ On)
24 omwordi 8492 . . . . . . . . . . . . . . . 16 ((1o ∈ On ∧ 𝐷 ∈ On ∧ (𝐴o 𝐶) ∈ On) → (1o𝐷 → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷)))
2523, 16, 6, 24syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (1o𝐷 → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷)))
2621, 25mpd 15 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 1o) ⊆ ((𝐴o 𝐶) ·o 𝐷))
278, 26eqsstrrd 3966 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ⊆ ((𝐴o 𝐶) ·o 𝐷))
28 omcl 8457 . . . . . . . . . . . . . . . 16 (((𝐴o 𝐶) ∈ On ∧ 𝐷 ∈ On) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
296, 16, 28syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
30 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ (𝐴o 𝐶))
31 onelon 6336 . . . . . . . . . . . . . . . 16 (((𝐴o 𝐶) ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶)) → 𝐸 ∈ On)
326, 30, 31syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐸 ∈ On)
33 oaword1 8473 . . . . . . . . . . . . . . 15 ((((𝐴o 𝐶) ·o 𝐷) ∈ On ∧ 𝐸 ∈ On) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
3429, 32, 33syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
35 simplrr 777 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)
3634, 35sseqtrd 3967 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵)
3727, 36sstrd 3941 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ⊆ 𝐵)
38 oeeu.1 . . . . . . . . . . . . . . 15 𝑋 = {𝑥 ∈ On ∣ 𝐵 ∈ (𝐴o 𝑥)}
3938oeeulem 8522 . . . . . . . . . . . . . 14 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝑋 ∈ On ∧ (𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)))
4039simp3d 1144 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ (𝐴o suc 𝑋))
4140ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴o suc 𝑋))
4239simp1d 1142 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝑋 ∈ On)
4342ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ On)
44 onsuc 7749 . . . . . . . . . . . . . . 15 (𝑋 ∈ On → suc 𝑋 ∈ On)
4543, 44syl 17 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝑋 ∈ On)
46 oecl 8458 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝑋 ∈ On) → (𝐴o suc 𝑋) ∈ On)
473, 45, 46syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝑋) ∈ On)
48 ontr2 6359 . . . . . . . . . . . . 13 (((𝐴o 𝐶) ∈ On ∧ (𝐴o suc 𝑋) ∈ On) → (((𝐴o 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
496, 47, 48syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝑋)) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
5037, 41, 49mp2and 699 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝐶) ∈ (𝐴o suc 𝑋))
51 simplll 774 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐴 ∈ (On ∖ 2o))
52 oeord 8509 . . . . . . . . . . . 12 ((𝐶 ∈ On ∧ suc 𝑋 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝐶 ∈ suc 𝑋 ↔ (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
534, 45, 51, 52syl3anc 1373 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 ∈ suc 𝑋 ↔ (𝐴o 𝐶) ∈ (𝐴o suc 𝑋)))
5450, 53mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 ∈ suc 𝑋)
55 onsssuc 6403 . . . . . . . . . . 11 ((𝐶 ∈ On ∧ 𝑋 ∈ On) → (𝐶𝑋𝐶 ∈ suc 𝑋))
564, 43, 55syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶𝑋𝐶 ∈ suc 𝑋))
5754, 56mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶𝑋)
5839simp2d 1143 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ⊆ 𝐵)
5958ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ⊆ 𝐵)
60 eloni 6321 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ On → Ord 𝐴)
613, 60syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → Ord 𝐴)
62 ordsucss 7754 . . . . . . . . . . . . . . . 16 (Ord 𝐴 → (𝐷𝐴 → suc 𝐷𝐴))
6361, 14, 62sylc 65 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷𝐴)
64 onsuc 7749 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ On → suc 𝐷 ∈ On)
6516, 64syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐷 ∈ On)
66 dif20el 8426 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (On ∖ 2o) → ∅ ∈ 𝐴)
6751, 66syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ 𝐴)
68 oen0 8507 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐶 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝐶))
693, 4, 67, 68syl21anc 837 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ∅ ∈ (𝐴o 𝐶))
70 omword 8491 . . . . . . . . . . . . . . . 16 (((suc 𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o 𝐶) ∈ On) ∧ ∅ ∈ (𝐴o 𝐶)) → (suc 𝐷𝐴 ↔ ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴)))
7165, 3, 6, 69, 70syl31anc 1375 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (suc 𝐷𝐴 ↔ ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴)))
7263, 71mpbid 232 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o suc 𝐷) ⊆ ((𝐴o 𝐶) ·o 𝐴))
73 oaord 8468 . . . . . . . . . . . . . . . . . 18 ((𝐸 ∈ On ∧ (𝐴o 𝐶) ∈ On ∧ ((𝐴o 𝐶) ·o 𝐷) ∈ On) → (𝐸 ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶))))
7432, 6, 29, 73syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐸 ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶))))
7530, 74mpbid 232 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
7635, 75eqeltrrd 2834 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
77 odi 8500 . . . . . . . . . . . . . . . . 17 (((𝐴o 𝐶) ∈ On ∧ 𝐷 ∈ On ∧ 1o ∈ On) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)))
786, 16, 23, 77syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)))
79 oa1suc 8452 . . . . . . . . . . . . . . . . . 18 (𝐷 ∈ On → (𝐷 +o 1o) = suc 𝐷)
8016, 79syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐷 +o 1o) = suc 𝐷)
8180oveq2d 7368 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o (𝐷 +o 1o)) = ((𝐴o 𝐶) ·o suc 𝐷))
828oveq2d 7368 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝐶) ·o 𝐷) +o ((𝐴o 𝐶) ·o 1o)) = (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
8378, 81, 823eqtr3d 2776 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → ((𝐴o 𝐶) ·o suc 𝐷) = (((𝐴o 𝐶) ·o 𝐷) +o (𝐴o 𝐶)))
8476, 83eleqtrrd 2836 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴o 𝐶) ·o suc 𝐷))
8572, 84sseldd 3931 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴))
86 oesuc 8448 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
873, 4, 86syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
8885, 87eleqtrrd 2836 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐵 ∈ (𝐴o suc 𝐶))
89 oecl 8458 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ 𝑋 ∈ On) → (𝐴o 𝑋) ∈ On)
903, 43, 89syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ∈ On)
91 onsuc 7749 . . . . . . . . . . . . . . 15 (𝐶 ∈ On → suc 𝐶 ∈ On)
9291ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → suc 𝐶 ∈ On)
93 oecl 8458 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ suc 𝐶 ∈ On) → (𝐴o suc 𝐶) ∈ On)
943, 92, 93syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o suc 𝐶) ∈ On)
95 ontr2 6359 . . . . . . . . . . . . 13 (((𝐴o 𝑋) ∈ On ∧ (𝐴o suc 𝐶) ∈ On) → (((𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝐶)) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9690, 94, 95syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (((𝐴o 𝑋) ⊆ 𝐵𝐵 ∈ (𝐴o suc 𝐶)) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9759, 88, 96mp2and 699 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐴o 𝑋) ∈ (𝐴o suc 𝐶))
98 oeord 8509 . . . . . . . . . . . 12 ((𝑋 ∈ On ∧ suc 𝐶 ∈ On ∧ 𝐴 ∈ (On ∖ 2o)) → (𝑋 ∈ suc 𝐶 ↔ (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
9943, 92, 51, 98syl3anc 1373 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋 ∈ suc 𝐶 ↔ (𝐴o 𝑋) ∈ (𝐴o suc 𝐶)))
10097, 99mpbird 257 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋 ∈ suc 𝐶)
101 onsssuc 6403 . . . . . . . . . . 11 ((𝑋 ∈ On ∧ 𝐶 ∈ On) → (𝑋𝐶𝑋 ∈ suc 𝐶))
10243, 4, 101syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝑋𝐶𝑋 ∈ suc 𝐶))
103100, 102mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝑋𝐶)
10457, 103eqssd 3948 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → 𝐶 = 𝑋)
105104, 16jca 511 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o))) → (𝐶 = 𝑋𝐷 ∈ On))
106 simprl 770 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 = 𝑋)
10742ad2antrr 726 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝑋 ∈ On)
108106, 107eqeltrd 2833 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐶 ∈ On)
1092ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐴 ∈ On)
110109, 108, 5syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) ∈ On)
111 simprr 772 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ On)
112110, 111, 28syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ∈ On)
113 simplrl 776 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ (𝐴o 𝐶))
114110, 113, 31syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐸 ∈ On)
115112, 114, 33syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ⊆ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸))
116 simplrr 777 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)
117115, 116sseqtrd 3967 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵)
11840ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ (𝐴o suc 𝑋))
119 suceq 6379 . . . . . . . . . . . . . . 15 (𝐶 = 𝑋 → suc 𝐶 = suc 𝑋)
120119ad2antrl 728 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → suc 𝐶 = suc 𝑋)
121120oveq2d 7368 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝐶) = (𝐴o suc 𝑋))
122109, 108, 86syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝐶) = ((𝐴o 𝐶) ·o 𝐴))
123121, 122eqtr3d 2770 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o suc 𝑋) = ((𝐴o 𝐶) ·o 𝐴))
124118, 123eleqtrd 2835 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴))
125 omcl 8457 . . . . . . . . . . . . 13 (((𝐴o 𝐶) ∈ On ∧ 𝐴 ∈ On) → ((𝐴o 𝐶) ·o 𝐴) ∈ On)
126110, 109, 125syl2anc 584 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐴) ∈ On)
127 ontr2 6359 . . . . . . . . . . . 12 ((((𝐴o 𝐶) ·o 𝐷) ∈ On ∧ ((𝐴o 𝐶) ·o 𝐴) ∈ On) → ((((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
128112, 126, 127syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴o 𝐶) ·o 𝐷) ⊆ 𝐵𝐵 ∈ ((𝐴o 𝐶) ·o 𝐴)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
129117, 124, 128mp2and 699 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴))
13066adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∅ ∈ 𝐴)
131130ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ 𝐴)
132109, 108, 131, 68syl21anc 837 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ∅ ∈ (𝐴o 𝐶))
133 omord2 8488 . . . . . . . . . . 11 (((𝐷 ∈ On ∧ 𝐴 ∈ On ∧ (𝐴o 𝐶) ∈ On) ∧ ∅ ∈ (𝐴o 𝐶)) → (𝐷𝐴 ↔ ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
134111, 109, 110, 132, 133syl31anc 1375 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷𝐴 ↔ ((𝐴o 𝐶) ·o 𝐷) ∈ ((𝐴o 𝐶) ·o 𝐴)))
135129, 134mpbird 257 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷𝐴)
136106oveq2d 7368 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) = (𝐴o 𝑋))
13758ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝑋) ⊆ 𝐵)
138136, 137eqsstrd 3965 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐴o 𝐶) ⊆ 𝐵)
139 eldifi 4080 . . . . . . . . . . . . . 14 (𝐵 ∈ (On ∖ 1o) → 𝐵 ∈ On)
140139adantl 481 . . . . . . . . . . . . 13 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → 𝐵 ∈ On)
141140ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐵 ∈ On)
142 ontri1 6345 . . . . . . . . . . . 12 (((𝐴o 𝐶) ∈ On ∧ 𝐵 ∈ On) → ((𝐴o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝐶)))
143110, 141, 142syl2anc 584 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ⊆ 𝐵 ↔ ¬ 𝐵 ∈ (𝐴o 𝐶)))
144138, 143mpbid 232 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ¬ 𝐵 ∈ (𝐴o 𝐶))
145 om0 8438 . . . . . . . . . . . . . . . . 17 ((𝐴o 𝐶) ∈ On → ((𝐴o 𝐶) ·o ∅) = ∅)
146110, 145syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((𝐴o 𝐶) ·o ∅) = ∅)
147146oveq1d 7367 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) = (∅ +o 𝐸))
148 oa0r 8459 . . . . . . . . . . . . . . . 16 (𝐸 ∈ On → (∅ +o 𝐸) = 𝐸)
149114, 148syl 17 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (∅ +o 𝐸) = 𝐸)
150147, 149eqtrd 2768 . . . . . . . . . . . . . 14 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) = 𝐸)
151150, 113eqeltrd 2833 . . . . . . . . . . . . 13 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (((𝐴o 𝐶) ·o ∅) +o 𝐸) ∈ (𝐴o 𝐶))
152 oveq2 7360 . . . . . . . . . . . . . . 15 (𝐷 = ∅ → ((𝐴o 𝐶) ·o 𝐷) = ((𝐴o 𝐶) ·o ∅))
153152oveq1d 7367 . . . . . . . . . . . . . 14 (𝐷 = ∅ → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴o 𝐶) ·o ∅) +o 𝐸))
154153eleq1d 2818 . . . . . . . . . . . . 13 (𝐷 = ∅ → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶) ↔ (((𝐴o 𝐶) ·o ∅) +o 𝐸) ∈ (𝐴o 𝐶)))
155151, 154syl5ibrcom 247 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶)))
156116eleq1d 2818 . . . . . . . . . . . 12 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) ∈ (𝐴o 𝐶) ↔ 𝐵 ∈ (𝐴o 𝐶)))
157155, 156sylibd 239 . . . . . . . . . . 11 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐷 = ∅ → 𝐵 ∈ (𝐴o 𝐶)))
158157necon3bd 2943 . . . . . . . . . 10 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (¬ 𝐵 ∈ (𝐴o 𝐶) → 𝐷 ≠ ∅))
159144, 158mpd 15 . . . . . . . . 9 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ≠ ∅)
160135, 159, 10sylanbrc 583 . . . . . . . 8 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → 𝐷 ∈ (𝐴 ∖ 1o))
161108, 160jca 511 . . . . . . 7 ((((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ∧ (𝐶 = 𝑋𝐷 ∈ On)) → (𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)))
162105, 161impbida 800 . . . . . 6 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋𝐷 ∈ On)))
163162ex 412 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) → ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ↔ (𝐶 = 𝑋𝐷 ∈ On))))
164163pm5.32rd 578 . . . 4 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ ((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))
165 anass 468 . . . 4 (((𝐶 = 𝑋𝐷 ∈ On) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))))
166164, 165bitrdi 287 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))))
167 3anass 1094 . . . . . 6 ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))
168 oveq2 7360 . . . . . . . 8 (𝐶 = 𝑋 → (𝐴o 𝐶) = (𝐴o 𝑋))
169168eleq2d 2819 . . . . . . 7 (𝐶 = 𝑋 → (𝐸 ∈ (𝐴o 𝐶) ↔ 𝐸 ∈ (𝐴o 𝑋)))
170168oveq1d 7367 . . . . . . . . 9 (𝐶 = 𝑋 → ((𝐴o 𝐶) ·o 𝐷) = ((𝐴o 𝑋) ·o 𝐷))
171170oveq1d 7367 . . . . . . . 8 (𝐶 = 𝑋 → (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = (((𝐴o 𝑋) ·o 𝐷) +o 𝐸))
172171eqeq1d 2735 . . . . . . 7 (𝐶 = 𝑋 → ((((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))
173169, 1723anbi23d 1441 . . . . . 6 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)))
174167, 173bitr3id 285 . . . . 5 (𝐶 = 𝑋 → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵)))
1752, 42, 89syl2anc 584 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ∈ On)
176 oen0 8507 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝑋 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴o 𝑋))
1772, 42, 130, 176syl21anc 837 . . . . . . 7 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ∅ ∈ (𝐴o 𝑋))
178177ne0d 4291 . . . . . 6 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (𝐴o 𝑋) ≠ ∅)
179 omeu 8506 . . . . . . 7 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴o 𝑋) ≠ ∅) → ∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
180 oeeu.2 . . . . . . . . 9 𝑃 = (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵))
181 opeq1 4824 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → ⟨𝑦, 𝑧⟩ = ⟨𝑑, 𝑧⟩)
182181eqeq2d 2744 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → (𝑤 = ⟨𝑦, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑧⟩))
183 oveq2 7360 . . . . . . . . . . . . . . 15 (𝑦 = 𝑑 → ((𝐴o 𝑋) ·o 𝑦) = ((𝐴o 𝑋) ·o 𝑑))
184183oveq1d 7367 . . . . . . . . . . . . . 14 (𝑦 = 𝑑 → (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = (((𝐴o 𝑋) ·o 𝑑) +o 𝑧))
185184eqeq1d 2735 . . . . . . . . . . . . 13 (𝑦 = 𝑑 → ((((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵))
186182, 185anbi12d 632 . . . . . . . . . . . 12 (𝑦 = 𝑑 → ((𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵)))
187 opeq2 4825 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → ⟨𝑑, 𝑧⟩ = ⟨𝑑, 𝑒⟩)
188187eqeq2d 2744 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → (𝑤 = ⟨𝑑, 𝑧⟩ ↔ 𝑤 = ⟨𝑑, 𝑒⟩))
189 oveq2 7360 . . . . . . . . . . . . . 14 (𝑧 = 𝑒 → (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = (((𝐴o 𝑋) ·o 𝑑) +o 𝑒))
190189eqeq1d 2735 . . . . . . . . . . . . 13 (𝑧 = 𝑒 → ((((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
191188, 190anbi12d 632 . . . . . . . . . . . 12 (𝑧 = 𝑒 → ((𝑤 = ⟨𝑑, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑧) = 𝐵) ↔ (𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
192186, 191cbvrex2vw 3216 . . . . . . . . . . 11 (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
193 eqeq1 2737 . . . . . . . . . . . . 13 (𝑤 = 𝑎 → (𝑤 = ⟨𝑑, 𝑒⟩ ↔ 𝑎 = ⟨𝑑, 𝑒⟩))
194193anbi1d 631 . . . . . . . . . . . 12 (𝑤 = 𝑎 → ((𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ (𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
1951942rexbidv 3198 . . . . . . . . . . 11 (𝑤 = 𝑎 → (∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
196192, 195bitrid 283 . . . . . . . . . 10 (𝑤 = 𝑎 → (∃𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵) ↔ ∃𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵)))
197196cbviotavw 6450 . . . . . . . . 9 (℩𝑤𝑦 ∈ On ∃𝑧 ∈ (𝐴o 𝑋)(𝑤 = ⟨𝑦, 𝑧⟩ ∧ (((𝐴o 𝑋) ·o 𝑦) +o 𝑧) = 𝐵)) = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
198180, 197eqtri 2756 . . . . . . . 8 𝑃 = (℩𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵))
199 oeeu.3 . . . . . . . 8 𝑌 = (1st𝑃)
200 oeeu.4 . . . . . . . 8 𝑍 = (2nd𝑃)
201 oveq2 7360 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝐴o 𝑋) ·o 𝑑) = ((𝐴o 𝑋) ·o 𝐷))
202201oveq1d 7367 . . . . . . . . 9 (𝑑 = 𝐷 → (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = (((𝐴o 𝑋) ·o 𝐷) +o 𝑒))
203202eqeq1d 2735 . . . . . . . 8 (𝑑 = 𝐷 → ((((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵))
204 oveq2 7360 . . . . . . . . 9 (𝑒 = 𝐸 → (((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = (((𝐴o 𝑋) ·o 𝐷) +o 𝐸))
205204eqeq1d 2735 . . . . . . . 8 (𝑒 = 𝐸 → ((((𝐴o 𝑋) ·o 𝐷) +o 𝑒) = 𝐵 ↔ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵))
206198, 199, 200, 203, 205opiota 7997 . . . . . . 7 (∃!𝑎𝑑 ∈ On ∃𝑒 ∈ (𝐴o 𝑋)(𝑎 = ⟨𝑑, 𝑒⟩ ∧ (((𝐴o 𝑋) ·o 𝑑) +o 𝑒) = 𝐵) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
207179, 206syl 17 . . . . . 6 (((𝐴o 𝑋) ∈ On ∧ 𝐵 ∈ On ∧ (𝐴o 𝑋) ≠ ∅) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
208175, 140, 178, 207syl3anc 1373 . . . . 5 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐷 ∈ On ∧ 𝐸 ∈ (𝐴o 𝑋) ∧ (((𝐴o 𝑋) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
209174, 208sylan9bbr 510 . . . 4 (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) ∧ 𝐶 = 𝑋) → ((𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐷 = 𝑌𝐸 = 𝑍)))
210209pm5.32da 579 . . 3 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → ((𝐶 = 𝑋 ∧ (𝐷 ∈ On ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵))) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
211166, 210bitrd 279 . 2 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍))))
212 3an4anass 1104 . 2 (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ ((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o)) ∧ (𝐸 ∈ (𝐴o 𝐶) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵)))
213 3anass 1094 . 2 ((𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍) ↔ (𝐶 = 𝑋 ∧ (𝐷 = 𝑌𝐸 = 𝑍)))
214211, 212, 2133bitr4g 314 1 ((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ (On ∖ 1o)) → (((𝐶 ∈ On ∧ 𝐷 ∈ (𝐴 ∖ 1o) ∧ 𝐸 ∈ (𝐴o 𝐶)) ∧ (((𝐴o 𝐶) ·o 𝐷) +o 𝐸) = 𝐵) ↔ (𝐶 = 𝑋𝐷 = 𝑌𝐸 = 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  ∃!weu 2565  wne 2929  wrex 3057  {crab 3396  cdif 3895  wss 3898  c0 4282  {csn 4575  cop 4581   cuni 4858   cint 4897  Ord word 6310  Oncon0 6311  suc csuc 6313  cio 6440  cfv 6486  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  1oc1o 8384  2oc2o 8385   +o coa 8388   ·o comu 8389  o coe 8390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-omul 8396  df-oexp 8397
This theorem is referenced by:  oeeu  8524  cantnflem3  9588  cantnflem4  9589
  Copyright terms: Public domain W3C validator