![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3an6 | Structured version Visualization version GIF version |
Description: Analogue of an4 654 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
3an6 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an6 1441 | . 2 ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂))) | |
2 | 1 | bicomi 223 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: an33rean 1479 f13dfv 7283 poxp 8133 wfrlem4OLD 8333 cotr2g 14959 axcontlem8 28854 cplgr3v 29320 cgr3tr4 35779 |
Copyright terms: Public domain | W3C validator |