| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3an6 | Structured version Visualization version GIF version | ||
| Description: Analogue of an4 656 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| 3an6 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an6 1446 | . 2 ⊢ (((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂))) | |
| 2 | 1 | bicomi 224 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜏) ∧ (𝜓 ∧ 𝜃 ∧ 𝜂))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: an33rean 1484 f13dfv 7277 poxp 8136 wfrlem4OLD 8335 cotr2g 14998 axcontlem8 28935 cplgr3v 29399 cgr3tr4 35994 |
| Copyright terms: Public domain | W3C validator |