MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3an6 Structured version   Visualization version   GIF version

Theorem 3an6 1442
Description: Analogue of an4 654 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
3an6 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) ↔ ((𝜑𝜒𝜏) ∧ (𝜓𝜃𝜂)))

Proof of Theorem 3an6
StepHypRef Expression
1 an6 1441 . 2 (((𝜑𝜒𝜏) ∧ (𝜓𝜃𝜂)) ↔ ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)))
21bicomi 223 1 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) ↔ ((𝜑𝜒𝜏) ∧ (𝜓𝜃𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  w3a 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086
This theorem is referenced by:  an33rean  1479  f13dfv  7283  poxp  8133  wfrlem4OLD  8333  cotr2g  14959  axcontlem8  28854  cplgr3v  29320  cgr3tr4  35779
  Copyright terms: Public domain W3C validator