MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3an6 Structured version   Visualization version   GIF version

Theorem 3an6 1444
Description: Analogue of an4 652 for triple conjunction. (Contributed by Scott Fenton, 16-Mar-2011.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
3an6 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) ↔ ((𝜑𝜒𝜏) ∧ (𝜓𝜃𝜂)))

Proof of Theorem 3an6
StepHypRef Expression
1 an6 1443 . 2 (((𝜑𝜒𝜏) ∧ (𝜓𝜃𝜂)) ↔ ((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)))
21bicomi 223 1 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) ↔ ((𝜑𝜒𝜏) ∧ (𝜓𝜃𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  an33rean  1481  an33reanOLD  1482  f13dfv  7127  poxp  7940  wfrlem4OLD  8114  cotr2g  14615  axcontlem8  27242  cplgr3v  27705  cgr3tr4  34281
  Copyright terms: Public domain W3C validator