Step | Hyp | Ref
| Expression |
1 | | wfrlem4OLD.2 |
. . . . . 6
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
2 | 1 | wfrlem2 7755 |
. . . . 5
⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) |
3 | | funfn 6216 |
. . . . 5
⊢ (Fun
𝑔 ↔ 𝑔 Fn dom 𝑔) |
4 | 2, 3 | sylib 210 |
. . . 4
⊢ (𝑔 ∈ 𝐵 → 𝑔 Fn dom 𝑔) |
5 | | fnresin1 6302 |
. . . 4
⊢ (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝑔 ∈ 𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
7 | 6 | adantr 473 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
8 | | inss1 4091 |
. . . . . . . 8
⊢ (dom
𝑔 ∩ dom ℎ) ⊆ dom 𝑔 |
9 | 8 | sseli 3853 |
. . . . . . 7
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → 𝑎 ∈ dom 𝑔) |
10 | 1 | wfrlem1 7754 |
. . . . . . . . 9
⊢ 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))} |
11 | 10 | abeq2i 2897 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
12 | | fndm 6286 |
. . . . . . . . . . . . 13
⊢ (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏) |
13 | 12 | raleqdv 3352 |
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑏 → (∀𝑎 ∈ dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ↔ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
14 | 13 | biimpar 470 |
. . . . . . . . . . 11
⊢ ((𝑔 Fn 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎 ∈ dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
15 | | rsp 3152 |
. . . . . . . . . . 11
⊢
(∀𝑎 ∈
dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
16 | 14, 15 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑔 Fn 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
17 | 16 | 3adant2 1111 |
. . . . . . . . 9
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
18 | 17 | exlimiv 1889 |
. . . . . . . 8
⊢
(∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
19 | 11, 18 | sylbi 209 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
20 | 9, 19 | syl5 34 |
. . . . . 6
⊢ (𝑔 ∈ 𝐵 → (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
21 | 20 | imp 398 |
. . . . 5
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
22 | 21 | adantlr 702 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
23 | | fvres 6516 |
. . . . 5
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) |
24 | 23 | adantl 474 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) |
25 | | resres 5709 |
. . . . . 6
⊢ ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) |
26 | | predss 5991 |
. . . . . . . . 9
⊢
Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) |
27 | | sseqin2 4078 |
. . . . . . . . 9
⊢
(Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) |
28 | 26, 27 | mpbi 222 |
. . . . . . . 8
⊢ ((dom
𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) |
29 | 1 | wfrlem1 7754 |
. . . . . . . . . . . 12
⊢ 𝐵 = {ℎ ∣ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))} |
30 | 29 | abeq2i 2897 |
. . . . . . . . . . 11
⊢ (ℎ ∈ 𝐵 ↔ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) |
31 | | 3an6 1425 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
32 | 31 | 2exbii 1811 |
. . . . . . . . . . . . 13
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ ∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
33 | | eeanv 2281 |
. . . . . . . . . . . . 13
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
34 | 32, 33 | bitri 267 |
. . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
35 | | ssinss1 4100 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ⊆ 𝐴 → (𝑏 ∩ 𝑐) ⊆ 𝐴) |
36 | 35 | ad2antrr 713 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → (𝑏 ∩ 𝑐) ⊆ 𝐴) |
37 | | nfra1 3166 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 |
38 | | nfra1 3166 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 |
39 | 37, 38 | nfan 1862 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎(∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) |
40 | | inss1 4091 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ∩ 𝑐) ⊆ 𝑏 |
41 | 40 | sseli 3853 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑏) |
42 | | rsp 3152 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎 ∈ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) |
43 | 41, 42 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) |
44 | | inss2 4092 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑏 ∩ 𝑐) ⊆ 𝑐 |
45 | 44 | sseli 3853 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑐) |
46 | | rsp 3152 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑎 ∈
𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎 ∈ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) |
47 | 45, 46 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) |
48 | 43, 47 | anim12d 599 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → ((∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) |
49 | | ssin 4093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
50 | 49 | biimpi 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
51 | 48, 50 | syl6com 37 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏 ∩ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
52 | 39, 51 | ralrimi 3163 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
53 | 52 | ad2ant2l 733 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
54 | 36, 53 | jca 504 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
55 | | fndm 6286 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ Fn 𝑐 → dom ℎ = 𝑐) |
56 | 12, 55 | ineqan12d 4077 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → (dom 𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐)) |
57 | | sseq1 3881 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ↔ (𝑏 ∩ 𝑐) ⊆ 𝐴)) |
58 | | sseq2 3882 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
59 | 58 | raleqbi1dv 3340 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
60 | 57, 59 | anbi12d 621 |
. . . . . . . . . . . . . . . . . 18
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) ↔ ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)))) |
61 | 60 | imbi2d 333 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → ((((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) ↔ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))))) |
62 | 56, 61 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → ((((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) ↔ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))))) |
63 | 54, 62 | mpbiri 250 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)))) |
64 | 63 | imp 398 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
65 | 64 | 3adant3 1112 |
. . . . . . . . . . . . 13
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
66 | 65 | exlimivv 1891 |
. . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
67 | 34, 66 | sylbir 227 |
. . . . . . . . . . 11
⊢
((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
68 | 11, 30, 67 | syl2anb 588 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
69 | 68 | adantr 473 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
70 | | simpr 477 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) |
71 | | preddowncl 6011 |
. . . . . . . . 9
⊢ (((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) → (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))) |
72 | 69, 70, 71 | sylc 65 |
. . . . . . . 8
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)) |
73 | 28, 72 | syl5eq 2823 |
. . . . . . 7
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎)) |
74 | 73 | reseq2d 5692 |
. . . . . 6
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) |
75 | 25, 74 | syl5eq 2823 |
. . . . 5
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) |
76 | 75 | fveq2d 6501 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
77 | 22, 24, 76 | 3eqtr4d 2821 |
. . 3
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) |
78 | 77 | ralrimiva 3129 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) |
79 | 7, 78 | jca 504 |
1
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |