| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | wfrlem4OLD.2 | . . . . . 6
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} | 
| 2 | 1 | wfrlem2OLD 8349 | . . . . 5
⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) | 
| 3 | 2 | funfnd 6597 | . . . 4
⊢ (𝑔 ∈ 𝐵 → 𝑔 Fn dom 𝑔) | 
| 4 |  | fnresin1 6693 | . . . 4
⊢ (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) | 
| 5 | 3, 4 | syl 17 | . . 3
⊢ (𝑔 ∈ 𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) | 
| 6 | 5 | adantr 480 | . 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) | 
| 7 | 1 | wfrlem1OLD 8348 | . . . . . . . 8
⊢ 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))} | 
| 8 | 7 | eqabri 2885 | . . . . . . 7
⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) | 
| 9 |  | fndm 6671 | . . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏) | 
| 10 | 9 | raleqdv 3326 | . . . . . . . . . . 11
⊢ (𝑔 Fn 𝑏 → (∀𝑎 ∈ dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ↔ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) | 
| 11 | 10 | biimpar 477 | . . . . . . . . . 10
⊢ ((𝑔 Fn 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎 ∈ dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) | 
| 12 |  | rsp 3247 | . . . . . . . . . 10
⊢
(∀𝑎 ∈
dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) | 
| 13 | 11, 12 | syl 17 | . . . . . . . . 9
⊢ ((𝑔 Fn 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) | 
| 14 | 13 | 3adant2 1132 | . . . . . . . 8
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) | 
| 15 | 14 | exlimiv 1930 | . . . . . . 7
⊢
(∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) | 
| 16 | 8, 15 | sylbi 217 | . . . . . 6
⊢ (𝑔 ∈ 𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) | 
| 17 |  | elinel1 4201 | . . . . . 6
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → 𝑎 ∈ dom 𝑔) | 
| 18 | 16, 17 | impel 505 | . . . . 5
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) | 
| 19 | 18 | adantlr 715 | . . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) | 
| 20 |  | fvres 6925 | . . . . 5
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) | 
| 21 | 20 | adantl 481 | . . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) | 
| 22 |  | resres 6010 | . . . . . 6
⊢ ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) | 
| 23 |  | predss 6329 | . . . . . . . . 9
⊢
Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) | 
| 24 |  | sseqin2 4223 | . . . . . . . . 9
⊢
(Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) | 
| 25 | 23, 24 | mpbi 230 | . . . . . . . 8
⊢ ((dom
𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) | 
| 26 | 1 | wfrlem1OLD 8348 | . . . . . . . . . . . 12
⊢ 𝐵 = {ℎ ∣ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))} | 
| 27 | 26 | eqabri 2885 | . . . . . . . . . . 11
⊢ (ℎ ∈ 𝐵 ↔ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) | 
| 28 |  | 3an6 1448 | . . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) | 
| 29 | 28 | 2exbii 1849 | . . . . . . . . . . . . 13
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ ∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) | 
| 30 |  | exdistrv 1955 | . . . . . . . . . . . . 13
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) | 
| 31 | 29, 30 | bitri 275 | . . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) | 
| 32 |  | ssinss1 4246 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ⊆ 𝐴 → (𝑏 ∩ 𝑐) ⊆ 𝐴) | 
| 33 | 32 | ad2antrr 726 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → (𝑏 ∩ 𝑐) ⊆ 𝐴) | 
| 34 |  | nfra1 3284 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 | 
| 35 |  | nfra1 3284 | . . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 | 
| 36 | 34, 35 | nfan 1899 | . . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎(∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) | 
| 37 |  | elinel1 4201 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑏) | 
| 38 |  | rsp 3247 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎 ∈ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) | 
| 39 | 37, 38 | syl5com 31 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) | 
| 40 |  | elinel2 4202 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑐) | 
| 41 |  | rsp 3247 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑎 ∈
𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎 ∈ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) | 
| 42 | 40, 41 | syl5com 31 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) | 
| 43 | 39, 42 | anim12d 609 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → ((∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) | 
| 44 |  | ssin 4239 | . . . . . . . . . . . . . . . . . . . . 21
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) | 
| 45 | 44 | biimpi 216 | . . . . . . . . . . . . . . . . . . . 20
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) | 
| 46 | 43, 45 | syl6com 37 | . . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏 ∩ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) | 
| 47 | 36, 46 | ralrimi 3257 | . . . . . . . . . . . . . . . . . 18
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) | 
| 48 | 47 | ad2ant2l 746 | . . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) | 
| 49 | 33, 48 | jca 511 | . . . . . . . . . . . . . . . 16
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) | 
| 50 |  | fndm 6671 | . . . . . . . . . . . . . . . . . 18
⊢ (ℎ Fn 𝑐 → dom ℎ = 𝑐) | 
| 51 | 9, 50 | ineqan12d 4222 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → (dom 𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐)) | 
| 52 |  | sseq1 4009 | . . . . . . . . . . . . . . . . . . 19
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ↔ (𝑏 ∩ 𝑐) ⊆ 𝐴)) | 
| 53 |  | sseq2 4010 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) | 
| 54 | 53 | raleqbi1dv 3338 | . . . . . . . . . . . . . . . . . . 19
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) | 
| 55 | 52, 54 | anbi12d 632 | . . . . . . . . . . . . . . . . . 18
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) ↔ ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)))) | 
| 56 | 55 | imbi2d 340 | . . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → ((((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) ↔ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))))) | 
| 57 | 51, 56 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → ((((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) ↔ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))))) | 
| 58 | 49, 57 | mpbiri 258 | . . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)))) | 
| 59 | 58 | imp 406 | . . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) | 
| 60 | 59 | 3adant3 1133 | . . . . . . . . . . . . 13
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) | 
| 61 | 60 | exlimivv 1932 | . . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) | 
| 62 | 31, 61 | sylbir 235 | . . . . . . . . . . 11
⊢
((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) | 
| 63 | 8, 27, 62 | syl2anb 598 | . . . . . . . . . 10
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) | 
| 64 | 63 | adantr 480 | . . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) | 
| 65 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) | 
| 66 |  | preddowncl 6353 | . . . . . . . . 9
⊢ (((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) → (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))) | 
| 67 | 64, 65, 66 | sylc 65 | . . . . . . . 8
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)) | 
| 68 | 25, 67 | eqtrid 2789 | . . . . . . 7
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎)) | 
| 69 | 68 | reseq2d 5997 | . . . . . 6
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) | 
| 70 | 22, 69 | eqtrid 2789 | . . . . 5
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) | 
| 71 | 70 | fveq2d 6910 | . . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) | 
| 72 | 19, 21, 71 | 3eqtr4d 2787 | . . 3
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) | 
| 73 | 72 | ralrimiva 3146 | . 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) | 
| 74 | 6, 73 | jca 511 | 1
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |