Step | Hyp | Ref
| Expression |
1 | | wfrlem4OLD.2 |
. . . . . 6
⊢ 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
2 | 1 | wfrlem2OLD 8111 |
. . . . 5
⊢ (𝑔 ∈ 𝐵 → Fun 𝑔) |
3 | 2 | funfnd 6449 |
. . . 4
⊢ (𝑔 ∈ 𝐵 → 𝑔 Fn dom 𝑔) |
4 | | fnresin1 6541 |
. . . 4
⊢ (𝑔 Fn dom 𝑔 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (𝑔 ∈ 𝐵 → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
6 | 5 | adantr 480 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → (𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ)) |
7 | 1 | wfrlem1OLD 8110 |
. . . . . . . 8
⊢ 𝐵 = {𝑔 ∣ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))} |
8 | 7 | abeq2i 2874 |
. . . . . . 7
⊢ (𝑔 ∈ 𝐵 ↔ ∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
9 | | fndm 6520 |
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑏 → dom 𝑔 = 𝑏) |
10 | 9 | raleqdv 3339 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑏 → (∀𝑎 ∈ dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ↔ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
11 | 10 | biimpar 477 |
. . . . . . . . . 10
⊢ ((𝑔 Fn 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → ∀𝑎 ∈ dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
12 | | rsp 3129 |
. . . . . . . . . 10
⊢
(∀𝑎 ∈
dom 𝑔(𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
13 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝑔 Fn 𝑏 ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
14 | 13 | 3adant2 1129 |
. . . . . . . 8
⊢ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
15 | 14 | exlimiv 1934 |
. . . . . . 7
⊢
(∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
16 | 8, 15 | sylbi 216 |
. . . . . 6
⊢ (𝑔 ∈ 𝐵 → (𝑎 ∈ dom 𝑔 → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))))) |
17 | | elinel1 4125 |
. . . . . 6
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → 𝑎 ∈ dom 𝑔) |
18 | 16, 17 | impel 505 |
. . . . 5
⊢ ((𝑔 ∈ 𝐵 ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
19 | 18 | adantlr 711 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
20 | | fvres 6775 |
. . . . 5
⊢ (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) |
21 | 20 | adantl 481 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝑔‘𝑎)) |
22 | | resres 5893 |
. . . . . 6
⊢ ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) |
23 | | predss 6199 |
. . . . . . . . 9
⊢
Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) |
24 | | sseqin2 4146 |
. . . . . . . . 9
⊢
(Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) |
25 | 23, 24 | mpbi 229 |
. . . . . . . 8
⊢ ((dom
𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) |
26 | 1 | wfrlem1OLD 8110 |
. . . . . . . . . . . 12
⊢ 𝐵 = {ℎ ∣ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))} |
27 | 26 | abeq2i 2874 |
. . . . . . . . . . 11
⊢ (ℎ ∈ 𝐵 ↔ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) |
28 | | 3an6 1444 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ ((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
29 | 28 | 2exbii 1852 |
. . . . . . . . . . . . 13
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ ∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
30 | | exdistrv 1960 |
. . . . . . . . . . . . 13
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ (ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
31 | 29, 30 | bitri 274 |
. . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) ↔ (∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎)))))) |
32 | | ssinss1 4168 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ⊆ 𝐴 → (𝑏 ∩ 𝑐) ⊆ 𝐴) |
33 | 32 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → (𝑏 ∩ 𝑐) ⊆ 𝐴) |
34 | | nfra1 3142 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 |
35 | | nfra1 3142 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑎∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 |
36 | 34, 35 | nfan 1903 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑎(∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) |
37 | | elinel1 4125 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑏) |
38 | | rsp 3129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → (𝑎 ∈ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) |
39 | 37, 38 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏)) |
40 | | elinel2 4126 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → 𝑎 ∈ 𝑐) |
41 | | rsp 3129 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑎 ∈
𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → (𝑎 ∈ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) |
42 | 40, 41 | syl5com 31 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → (∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐 → Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) |
43 | 39, 42 | anim12d 608 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 ∈ (𝑏 ∩ 𝑐) → ((∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) |
44 | | ssin 4161 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
45 | 44 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
46 | 43, 45 | syl6com 37 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → (𝑎 ∈ (𝑏 ∩ 𝑐) → Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
47 | 36, 46 | ralrimi 3139 |
. . . . . . . . . . . . . . . . . 18
⊢
((∀𝑎 ∈
𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
48 | 47 | ad2ant2l 742 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)) |
49 | 33, 48 | jca 511 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
50 | | fndm 6520 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℎ Fn 𝑐 → dom ℎ = 𝑐) |
51 | 9, 50 | ineqan12d 4145 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → (dom 𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐)) |
52 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ↔ (𝑏 ∩ 𝑐) ⊆ 𝐴)) |
53 | | sseq2 3943 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
54 | 53 | raleqbi1dv 3331 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ) ↔ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))) |
55 | 52, 54 | anbi12d 630 |
. . . . . . . . . . . . . . . . . 18
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → (((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) ↔ ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐)))) |
56 | 55 | imbi2d 340 |
. . . . . . . . . . . . . . . . 17
⊢ ((dom
𝑔 ∩ dom ℎ) = (𝑏 ∩ 𝑐) → ((((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) ↔ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))))) |
57 | 51, 56 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → ((((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) ↔ (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((𝑏 ∩ 𝑐) ⊆ 𝐴 ∧ ∀𝑎 ∈ (𝑏 ∩ 𝑐)Pred(𝑅, 𝐴, 𝑎) ⊆ (𝑏 ∩ 𝑐))))) |
58 | 49, 57 | mpbiri 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) → (((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)))) |
59 | 58 | imp 406 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
60 | 59 | 3adant3 1130 |
. . . . . . . . . . . . 13
⊢ (((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
61 | 60 | exlimivv 1936 |
. . . . . . . . . . . 12
⊢
(∃𝑏∃𝑐((𝑔 Fn 𝑏 ∧ ℎ Fn 𝑐) ∧ ((𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐)) ∧ (∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
62 | 31, 61 | sylbir 234 |
. . . . . . . . . . 11
⊢
((∃𝑏(𝑔 Fn 𝑏 ∧ (𝑏 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑏 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑏) ∧ ∀𝑎 ∈ 𝑏 (𝑔‘𝑎) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) ∧ ∃𝑐(ℎ Fn 𝑐 ∧ (𝑐 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝑐 Pred(𝑅, 𝐴, 𝑎) ⊆ 𝑐) ∧ ∀𝑎 ∈ 𝑐 (ℎ‘𝑎) = (𝐹‘(ℎ ↾ Pred(𝑅, 𝐴, 𝑎))))) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
63 | 8, 27, 62 | syl2anb 597 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
64 | 63 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ))) |
65 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) |
66 | | preddowncl 6224 |
. . . . . . . . 9
⊢ (((dom
𝑔 ∩ dom ℎ) ⊆ 𝐴 ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)Pred(𝑅, 𝐴, 𝑎) ⊆ (dom 𝑔 ∩ dom ℎ)) → (𝑎 ∈ (dom 𝑔 ∩ dom ℎ) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎))) |
67 | 64, 65, 66 | sylc 65 |
. . . . . . . 8
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎) = Pred(𝑅, 𝐴, 𝑎)) |
68 | 25, 67 | eqtrid 2790 |
. . . . . . 7
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = Pred(𝑅, 𝐴, 𝑎)) |
69 | 68 | reseq2d 5880 |
. . . . . 6
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝑔 ↾ ((dom 𝑔 ∩ dom ℎ) ∩ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) |
70 | 22, 69 | eqtrid 2790 |
. . . . 5
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)) = (𝑔 ↾ Pred(𝑅, 𝐴, 𝑎))) |
71 | 70 | fveq2d 6760 |
. . . 4
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))) = (𝐹‘(𝑔 ↾ Pred(𝑅, 𝐴, 𝑎)))) |
72 | 19, 21, 71 | 3eqtr4d 2788 |
. . 3
⊢ (((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) ∧ 𝑎 ∈ (dom 𝑔 ∩ dom ℎ)) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) |
73 | 72 | ralrimiva 3107 |
. 2
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎)))) |
74 | 6, 73 | jca 511 |
1
⊢ ((𝑔 ∈ 𝐵 ∧ ℎ ∈ 𝐵) → ((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) Fn (dom 𝑔 ∩ dom ℎ) ∧ ∀𝑎 ∈ (dom 𝑔 ∩ dom ℎ)((𝑔 ↾ (dom 𝑔 ∩ dom ℎ))‘𝑎) = (𝐹‘((𝑔 ↾ (dom 𝑔 ∩ dom ℎ)) ↾ Pred(𝑅, (dom 𝑔 ∩ dom ℎ), 𝑎))))) |