Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > an6 | Structured version Visualization version GIF version |
Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.) |
Ref | Expression |
---|---|
an6 | ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an4 652 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜃 ∧ 𝜏) ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜓) ∧ (𝜃 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂))) | |
2 | an4 652 | . . . 4 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜃 ∧ 𝜏)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏))) | |
3 | 2 | anbi1i 623 | . . 3 ⊢ ((((𝜑 ∧ 𝜓) ∧ (𝜃 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂))) |
4 | 1, 3 | bitri 274 | . 2 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜃 ∧ 𝜏) ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂))) |
5 | df-3an 1087 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
6 | df-3an 1087 | . . 3 ⊢ ((𝜃 ∧ 𝜏 ∧ 𝜂) ↔ ((𝜃 ∧ 𝜏) ∧ 𝜂)) | |
7 | 5, 6 | anbi12i 626 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ ((𝜃 ∧ 𝜏) ∧ 𝜂))) |
8 | df-3an 1087 | . 2 ⊢ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂)) ↔ (((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏)) ∧ (𝜒 ∧ 𝜂))) | |
9 | 4, 7, 8 | 3bitr4i 302 | 1 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) ↔ ((𝜑 ∧ 𝜃) ∧ (𝜓 ∧ 𝜏) ∧ (𝜒 ∧ 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3an6 1444 elfzuzb 13179 fzadd2 13220 ptbasin 22636 iimulcl 24006 nb3grpr 27652 nb3grpr2 27653 txpconn 33094 paddasslem9 37769 paddasslem10 37770 gboge9 45104 |
Copyright terms: Public domain | W3C validator |