MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr3v Structured version   Visualization version   GIF version

Theorem cplgr3v 27132
Description: A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
cplgr3v.e 𝐸 = (Edg‘𝐺)
cplgr3v.t (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
cplgr3v (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))

Proof of Theorem cplgr3v
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplgr3v.t . . . . 5 (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
21eqcomi 2833 . . . 4 {𝐴, 𝐵, 𝐶} = (Vtx‘𝐺)
32iscplgrnb 27113 . . 3 (𝐺 ∈ UPGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
433ad2ant2 1128 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
5 sneq 4573 . . . . . 6 (𝑣 = 𝐴 → {𝑣} = {𝐴})
65difeq2d 4102 . . . . 5 (𝑣 = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴}))
7 tprot 4683 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
87difeq1i 4098 . . . . . . 7 ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = ({𝐵, 𝐶, 𝐴} ∖ {𝐴})
9 necom 3073 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
10 necom 3073 . . . . . . . . 9 (𝐴𝐶𝐶𝐴)
11 diftpsn3 4733 . . . . . . . . 9 ((𝐵𝐴𝐶𝐴) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
129, 10, 11syl2anb 597 . . . . . . . 8 ((𝐴𝐵𝐴𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
13123adant3 1126 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
148, 13syl5eq 2872 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶})
15143ad2ant3 1129 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶})
166, 15sylan9eqr 2882 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐵, 𝐶})
17 oveq2 7159 . . . . . 6 (𝑣 = 𝐴 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐴))
1817eleq2d 2902 . . . . 5 (𝑣 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
1918adantl 482 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
2016, 19raleqbidv 3406 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
21 sneq 4573 . . . . . 6 (𝑣 = 𝐵 → {𝑣} = {𝐵})
2221difeq2d 4102 . . . . 5 (𝑣 = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵}))
23 tprot 4683 . . . . . . . . 9 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
2423eqcomi 2833 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}
2524difeq1i 4098 . . . . . . 7 ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = ({𝐶, 𝐴, 𝐵} ∖ {𝐵})
26 necom 3073 . . . . . . . . . . . 12 (𝐵𝐶𝐶𝐵)
2726biimpi 217 . . . . . . . . . . 11 (𝐵𝐶𝐶𝐵)
2827anim2i 616 . . . . . . . . . 10 ((𝐴𝐵𝐵𝐶) → (𝐴𝐵𝐶𝐵))
2928ancomd 462 . . . . . . . . 9 ((𝐴𝐵𝐵𝐶) → (𝐶𝐵𝐴𝐵))
30 diftpsn3 4733 . . . . . . . . 9 ((𝐶𝐵𝐴𝐵) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
3129, 30syl 17 . . . . . . . 8 ((𝐴𝐵𝐵𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
32313adant2 1125 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
3325, 32syl5eq 2872 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴})
34333ad2ant3 1129 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴})
3522, 34sylan9eqr 2882 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐶, 𝐴})
36 oveq2 7159 . . . . . 6 (𝑣 = 𝐵 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐵))
3736eleq2d 2902 . . . . 5 (𝑣 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
3837adantl 482 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
3935, 38raleqbidv 3406 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
40 sneq 4573 . . . . . 6 (𝑣 = 𝐶 → {𝑣} = {𝐶})
4140difeq2d 4102 . . . . 5 (𝑣 = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}))
42 diftpsn3 4733 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
43423adant1 1124 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
44433ad2ant3 1129 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
4541, 44sylan9eqr 2882 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐴, 𝐵})
46 oveq2 7159 . . . . . 6 (𝑣 = 𝐶 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐶))
4746eleq2d 2902 . . . . 5 (𝑣 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
4847adantl 482 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
4945, 48raleqbidv 3406 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
50 simp1 1130 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐴𝑋)
51503ad2ant1 1127 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐴𝑋)
52 simp2 1131 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐵𝑌)
53523ad2ant1 1127 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐵𝑌)
54 simp3 1132 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶𝑍)
55543ad2ant1 1127 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐶𝑍)
5620, 39, 49, 51, 53, 55raltpd 4714 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶))))
57 eleq1 2904 . . . . . . 7 (𝑛 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
58 eleq1 2904 . . . . . . 7 (𝑛 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
5957, 58ralprg 4630 . . . . . 6 ((𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
60593adant1 1124 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
61 eleq1 2904 . . . . . . . 8 (𝑛 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐵)))
62 eleq1 2904 . . . . . . . 8 (𝑛 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)))
6361, 62ralprg 4630 . . . . . . 7 ((𝐶𝑍𝐴𝑋) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
6463ancoms 459 . . . . . 6 ((𝐴𝑋𝐶𝑍) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
65643adant2 1125 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
66 eleq1 2904 . . . . . . 7 (𝑛 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)))
67 eleq1 2904 . . . . . . 7 (𝑛 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
6866, 67ralprg 4630 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
69683adant3 1126 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
7060, 65, 693anbi123d 1429 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
71703ad2ant1 1127 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
72 3an6 1439 . . . 4 (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
7372a1i 11 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
74 nbgrsym 27060 . . . . . . 7 (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))
75 nbgrsym 27060 . . . . . . 7 (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))
76 nbgrsym 27060 . . . . . . 7 (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))
7774, 75, 763anbi123i 1149 . . . . . 6 ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
7877a1i 11 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
7978anbi1d 629 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
80 3anrot 1094 . . . . . . . 8 ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
8180bicomi 225 . . . . . . 7 ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8281anbi1i 623 . . . . . 6 (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
83 anidm 565 . . . . . 6 (((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8482, 83bitri 276 . . . . 5 (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8584a1i 11 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
86 tpid1g 4703 . . . . . . . 8 (𝐴𝑋𝐴 ∈ {𝐴, 𝐵, 𝐶})
87 tpid2g 4705 . . . . . . . 8 (𝐵𝑌𝐵 ∈ {𝐴, 𝐵, 𝐶})
88 tpid3g 4706 . . . . . . . 8 (𝐶𝑍𝐶 ∈ {𝐴, 𝐵, 𝐶})
8986, 87, 883anim123i 1145 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
90 df-3an 1083 . . . . . . 7 ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ↔ ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
9189, 90sylib 219 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
92 simplr 765 . . . . . . . . . 10 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
9392anim1ci 615 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
94933adant3 1126 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
95 simpll 763 . . . . . . . . 9 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐴 ∈ {𝐴, 𝐵, 𝐶})
96 simp1 1130 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐵)
9795, 96anim12i 612 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵))
98 cplgr3v.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
992, 98nbupgrel 27042 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵)) → (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ↔ {𝐴, 𝐵} ∈ 𝐸))
10094, 97, 993imp3i2an 1339 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ↔ {𝐴, 𝐵} ∈ 𝐸))
101 simpr 485 . . . . . . . . . 10 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
102101anim1ci 615 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
1031023adant3 1126 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
104 simp3 1132 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
10592, 104anim12i 612 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶))
1062, 98nbupgrel 27042 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶)) → (𝐵 ∈ (𝐺 NeighbVtx 𝐶) ↔ {𝐵, 𝐶} ∈ 𝐸))
107103, 105, 1063imp3i2an 1339 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ (𝐺 NeighbVtx 𝐶) ↔ {𝐵, 𝐶} ∈ 𝐸))
10895anim1ci 615 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}))
1091083adant3 1126 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}))
110 simp2 1131 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐶)
111110necomd 3075 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
112101, 111anim12i 612 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴))
1132, 98nbupgrel 27042 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴)) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
114109, 112, 1133imp3i2an 1339 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
115100, 107, 1143anbi123d 1429 . . . . . 6 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
11691, 115syl3an1 1157 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
11780, 116syl5bb 284 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
11879, 85, 1173bitrd 306 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
11971, 73, 1183bitrd 306 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
1204, 56, 1193bitrd 306 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wne 3020  wral 3142  cdif 3936  {csn 4563  {cpr 4565  {ctp 4567  cfv 6351  (class class class)co 7151  Vtxcvtx 26696  Edgcedg 26747  UPGraphcupgr 26780   NeighbVtx cnbgr 27029  ComplGraphccplgr 27106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12886  df-hash 13684  df-edg 26748  df-upgr 26782  df-nbgr 27030  df-uvtx 27083  df-cplgr 27108
This theorem is referenced by:  cusgr3vnbpr  27133
  Copyright terms: Public domain W3C validator