MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplgr3v Structured version   Visualization version   GIF version

Theorem cplgr3v 27225
Description: A pseudograph with three (different) vertices is complete iff there is an edge between each of these three vertices. (Contributed by Alexander van der Vekens, 12-Oct-2017.) (Revised by AV, 5-Nov-2020.) (Proof shortened by AV, 13-Feb-2022.)
Hypotheses
Ref Expression
cplgr3v.e 𝐸 = (Edg‘𝐺)
cplgr3v.t (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
Assertion
Ref Expression
cplgr3v (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))

Proof of Theorem cplgr3v
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplgr3v.t . . . . 5 (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}
21eqcomi 2807 . . . 4 {𝐴, 𝐵, 𝐶} = (Vtx‘𝐺)
32iscplgrnb 27206 . . 3 (𝐺 ∈ UPGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
433ad2ant2 1131 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣)))
5 sneq 4535 . . . . . 6 (𝑣 = 𝐴 → {𝑣} = {𝐴})
65difeq2d 4050 . . . . 5 (𝑣 = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴}))
7 tprot 4645 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
87difeq1i 4046 . . . . . . 7 ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = ({𝐵, 𝐶, 𝐴} ∖ {𝐴})
9 necom 3040 . . . . . . . . 9 (𝐴𝐵𝐵𝐴)
10 necom 3040 . . . . . . . . 9 (𝐴𝐶𝐶𝐴)
11 diftpsn3 4695 . . . . . . . . 9 ((𝐵𝐴𝐶𝐴) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
129, 10, 11syl2anb 600 . . . . . . . 8 ((𝐴𝐵𝐴𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
13123adant3 1129 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐵, 𝐶, 𝐴} ∖ {𝐴}) = {𝐵, 𝐶})
148, 13syl5eq 2845 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶})
15143ad2ant3 1132 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) = {𝐵, 𝐶})
166, 15sylan9eqr 2855 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐵, 𝐶})
17 oveq2 7143 . . . . . 6 (𝑣 = 𝐴 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐴))
1817eleq2d 2875 . . . . 5 (𝑣 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
1918adantl 485 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
2016, 19raleqbidv 3354 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐴) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴)))
21 sneq 4535 . . . . . 6 (𝑣 = 𝐵 → {𝑣} = {𝐵})
2221difeq2d 4050 . . . . 5 (𝑣 = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵}))
23 tprot 4645 . . . . . . . . 9 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
2423eqcomi 2807 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}
2524difeq1i 4046 . . . . . . 7 ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = ({𝐶, 𝐴, 𝐵} ∖ {𝐵})
26 necom 3040 . . . . . . . . . . . 12 (𝐵𝐶𝐶𝐵)
2726biimpi 219 . . . . . . . . . . 11 (𝐵𝐶𝐶𝐵)
2827anim2i 619 . . . . . . . . . 10 ((𝐴𝐵𝐵𝐶) → (𝐴𝐵𝐶𝐵))
2928ancomd 465 . . . . . . . . 9 ((𝐴𝐵𝐵𝐶) → (𝐶𝐵𝐴𝐵))
30 diftpsn3 4695 . . . . . . . . 9 ((𝐶𝐵𝐴𝐵) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
3129, 30syl 17 . . . . . . . 8 ((𝐴𝐵𝐵𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
32313adant2 1128 . . . . . . 7 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐶, 𝐴, 𝐵} ∖ {𝐵}) = {𝐶, 𝐴})
3325, 32syl5eq 2845 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴})
34333ad2ant3 1132 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) = {𝐶, 𝐴})
3522, 34sylan9eqr 2855 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐶, 𝐴})
36 oveq2 7143 . . . . . 6 (𝑣 = 𝐵 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐵))
3736eleq2d 2875 . . . . 5 (𝑣 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
3837adantl 485 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
3935, 38raleqbidv 3354 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐵) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵)))
40 sneq 4535 . . . . . 6 (𝑣 = 𝐶 → {𝑣} = {𝐶})
4140difeq2d 4050 . . . . 5 (𝑣 = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}))
42 diftpsn3 4695 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
43423adant1 1127 . . . . . 6 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
44433ad2ant3 1132 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
4541, 44sylan9eqr 2855 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝑣}) = {𝐴, 𝐵})
46 oveq2 7143 . . . . . 6 (𝑣 = 𝐶 → (𝐺 NeighbVtx 𝑣) = (𝐺 NeighbVtx 𝐶))
4746eleq2d 2875 . . . . 5 (𝑣 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
4847adantl 485 . . . 4 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → (𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ 𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
4945, 48raleqbidv 3354 . . 3 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ 𝑣 = 𝐶) → (∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)))
50 simp1 1133 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐴𝑋)
51503ad2ant1 1130 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐴𝑋)
52 simp2 1134 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐵𝑌)
53523ad2ant1 1130 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐵𝑌)
54 simp3 1135 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶𝑍)
55543ad2ant1 1130 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝐶𝑍)
5620, 39, 49, 51, 53, 55raltpd 4677 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∀𝑣 ∈ {𝐴, 𝐵, 𝐶}∀𝑛 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝑣})𝑛 ∈ (𝐺 NeighbVtx 𝑣) ↔ (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶))))
57 eleq1 2877 . . . . . . 7 (𝑛 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐴)))
58 eleq1 2877 . . . . . . 7 (𝑛 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
5957, 58ralprg 4592 . . . . . 6 ((𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
60593adant1 1127 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ↔ (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
61 eleq1 2877 . . . . . . . 8 (𝑛 = 𝐶 → (𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐵)))
62 eleq1 2877 . . . . . . . 8 (𝑛 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)))
6361, 62ralprg 4592 . . . . . . 7 ((𝐶𝑍𝐴𝑋) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
6463ancoms 462 . . . . . 6 ((𝐴𝑋𝐶𝑍) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
65643adant2 1128 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))))
66 eleq1 2877 . . . . . . 7 (𝑛 = 𝐴 → (𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)))
67 eleq1 2877 . . . . . . 7 (𝑛 = 𝐵 → (𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
6866, 67ralprg 4592 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
69683adant3 1129 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
7060, 65, 693anbi123d 1433 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
71703ad2ant1 1130 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
72 3an6 1443 . . . 4 (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
7372a1i 11 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵)) ∧ (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
74 nbgrsym 27153 . . . . . . 7 (𝐵 ∈ (𝐺 NeighbVtx 𝐴) ↔ 𝐴 ∈ (𝐺 NeighbVtx 𝐵))
75 nbgrsym 27153 . . . . . . 7 (𝐶 ∈ (𝐺 NeighbVtx 𝐵) ↔ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))
76 nbgrsym 27153 . . . . . . 7 (𝐴 ∈ (𝐺 NeighbVtx 𝐶) ↔ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))
7774, 75, 763anbi123i 1152 . . . . . 6 ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
7877a1i 11 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴))))
7978anbi1d 632 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))))
80 3anrot 1097 . . . . . . . 8 ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ↔ (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)))
8180bicomi 227 . . . . . . 7 ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8281anbi1i 626 . . . . . 6 (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
83 anidm 568 . . . . . 6 (((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8482, 83bitri 278 . . . . 5 (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)))
8584a1i 11 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))))
86 tpid1g 4665 . . . . . . . 8 (𝐴𝑋𝐴 ∈ {𝐴, 𝐵, 𝐶})
87 tpid2g 4667 . . . . . . . 8 (𝐵𝑌𝐵 ∈ {𝐴, 𝐵, 𝐶})
88 tpid3g 4668 . . . . . . . 8 (𝐶𝑍𝐶 ∈ {𝐴, 𝐵, 𝐶})
8986, 87, 883anim123i 1148 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
90 df-3an 1086 . . . . . . 7 ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ↔ ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
9189, 90sylib 221 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
92 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
9392anim1ci 618 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
94933adant3 1129 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}))
95 simpll 766 . . . . . . . . 9 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐴 ∈ {𝐴, 𝐵, 𝐶})
96 simp1 1133 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐵)
9795, 96anim12i 615 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵))
98 cplgr3v.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
992, 98nbupgrel 27135 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐴𝐵)) → (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ↔ {𝐴, 𝐵} ∈ 𝐸))
10094, 97, 993imp3i2an 1342 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐴 ∈ (𝐺 NeighbVtx 𝐵) ↔ {𝐴, 𝐵} ∈ 𝐸))
101 simpr 488 . . . . . . . . . 10 (((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
102101anim1ci 618 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
1031023adant3 1129 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}))
104 simp3 1135 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐶)
10592, 104anim12i 615 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶))
1062, 98nbupgrel 27135 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵𝐶)) → (𝐵 ∈ (𝐺 NeighbVtx 𝐶) ↔ {𝐵, 𝐶} ∈ 𝐸))
107103, 105, 1063imp3i2an 1342 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐵 ∈ (𝐺 NeighbVtx 𝐶) ↔ {𝐵, 𝐶} ∈ 𝐸))
10895anim1ci 618 . . . . . . . . 9 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}))
1091083adant3 1129 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}))
110 simp2 1134 . . . . . . . . . 10 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐶)
111110necomd 3042 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐶𝐴)
112101, 111anim12i 615 . . . . . . . 8 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴))
1132, 98nbupgrel 27135 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝐴 ∈ {𝐴, 𝐵, 𝐶}) ∧ (𝐶 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶𝐴)) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
114109, 112, 1133imp3i2an 1342 . . . . . . 7 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ↔ {𝐶, 𝐴} ∈ 𝐸))
115100, 107, 1143anbi123d 1433 . . . . . 6 ((((𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
11691, 115syl3an1 1160 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐴)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
11780, 116syl5bb 286 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
11879, 85, 1173bitrd 308 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (((𝐵 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐶 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐶)) ∧ (𝐶 ∈ (𝐺 NeighbVtx 𝐴) ∧ 𝐴 ∈ (𝐺 NeighbVtx 𝐵) ∧ 𝐵 ∈ (𝐺 NeighbVtx 𝐶))) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
11971, 73, 1183bitrd 308 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((∀𝑛 ∈ {𝐵, 𝐶}𝑛 ∈ (𝐺 NeighbVtx 𝐴) ∧ ∀𝑛 ∈ {𝐶, 𝐴}𝑛 ∈ (𝐺 NeighbVtx 𝐵) ∧ ∀𝑛 ∈ {𝐴, 𝐵}𝑛 ∈ (𝐺 NeighbVtx 𝐶)) ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
1204, 56, 1193bitrd 308 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ 𝐺 ∈ UPGraph ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (𝐺 ∈ ComplGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  cdif 3878  {csn 4525  {cpr 4527  {ctp 4529  cfv 6324  (class class class)co 7135  Vtxcvtx 26789  Edgcedg 26840  UPGraphcupgr 26873   NeighbVtx cnbgr 27122  ComplGraphccplgr 27199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-edg 26841  df-upgr 26875  df-nbgr 27123  df-uvtx 27176  df-cplgr 27201
This theorem is referenced by:  cusgr3vnbpr  27226
  Copyright terms: Public domain W3C validator