| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr3i | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr3i.1 | ⊢ 𝐴 ∈ 𝐵 |
| 3eltr3i.2 | ⊢ 𝐴 = 𝐶 |
| 3eltr3i.3 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| 3eltr3i | ⊢ 𝐶 ∈ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
| 2 | 3eltr3i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 3eltr3i.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
| 4 | 2, 3 | eleqtri 2831 | . 2 ⊢ 𝐴 ∈ 𝐷 |
| 5 | 1, 4 | eqeltrri 2830 | 1 ⊢ 𝐶 ∈ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-clel 2808 |
| This theorem is referenced by: raddcn 33887 clsk1independent 44021 fourierdlem62 46140 |
| Copyright terms: Public domain | W3C validator |