MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr3i Structured version   Visualization version   GIF version

Theorem 3eltr3i 2851
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr3i.1 𝐴𝐵
3eltr3i.2 𝐴 = 𝐶
3eltr3i.3 𝐵 = 𝐷
Assertion
Ref Expression
3eltr3i 𝐶𝐷

Proof of Theorem 3eltr3i
StepHypRef Expression
1 3eltr3i.2 . 2 𝐴 = 𝐶
2 3eltr3i.1 . . 3 𝐴𝐵
3 3eltr3i.3 . . 3 𝐵 = 𝐷
42, 3eleqtri 2837 . 2 𝐴𝐷
51, 4eqeltrri 2836 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817
This theorem is referenced by:  raddcn  31781  clsk1independent  41545  fourierdlem62  43599
  Copyright terms: Public domain W3C validator