Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eltr3i | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr3i.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr3i.2 | ⊢ 𝐴 = 𝐶 |
3eltr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eltr3i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
2 | 3eltr3i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr3i.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | eleqtri 2837 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltrri 2836 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: raddcn 31879 clsk1independent 41656 fourierdlem62 43709 |
Copyright terms: Public domain | W3C validator |