Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eltr3i | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr3i.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr3i.2 | ⊢ 𝐴 = 𝐶 |
3eltr3i.3 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
3eltr3i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr3i.2 | . 2 ⊢ 𝐴 = 𝐶 | |
2 | 3eltr3i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr3i.3 | . . 3 ⊢ 𝐵 = 𝐷 | |
4 | 2, 3 | eleqtri 2835 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltrri 2834 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2728 df-clel 2814 |
This theorem is referenced by: raddcn 32015 clsk1independent 41895 fourierdlem62 43964 |
Copyright terms: Public domain | W3C validator |