Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem62 Structured version   Visualization version   GIF version

Theorem fourierdlem62 41995
Description: The function 𝐾 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem62.k 𝐾 = (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))))
Assertion
Ref Expression
fourierdlem62 𝐾 ∈ ((-π[,]π)–cn→ℝ)

Proof of Theorem fourierdlem62
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem62.k . . . 4 𝐾 = (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))))
2 eqeq1 2799 . . . . . 6 (𝑦 = 𝑠 → (𝑦 = 0 ↔ 𝑠 = 0))
3 id 22 . . . . . . 7 (𝑦 = 𝑠𝑦 = 𝑠)
4 oveq1 7023 . . . . . . . . 9 (𝑦 = 𝑠 → (𝑦 / 2) = (𝑠 / 2))
54fveq2d 6542 . . . . . . . 8 (𝑦 = 𝑠 → (sin‘(𝑦 / 2)) = (sin‘(𝑠 / 2)))
65oveq2d 7032 . . . . . . 7 (𝑦 = 𝑠 → (2 · (sin‘(𝑦 / 2))) = (2 · (sin‘(𝑠 / 2))))
73, 6oveq12d 7034 . . . . . 6 (𝑦 = 𝑠 → (𝑦 / (2 · (sin‘(𝑦 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
82, 7ifbieq2d 4406 . . . . 5 (𝑦 = 𝑠 → if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
98cbvmptv 5061 . . . 4 (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
101, 9eqtri 2819 . . 3 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
1110fourierdlem43 41977 . 2 𝐾:(-π[,]π)⟶ℝ
12 ax-resscn 10440 . . 3 ℝ ⊆ ℂ
13 fss 6395 . . . . . 6 ((𝐾:(-π[,]π)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐾:(-π[,]π)⟶ℂ)
1411, 12, 13mp2an 688 . . . . 5 𝐾:(-π[,]π)⟶ℂ
1514a1i 11 . . . . . . . . 9 (𝑠 = 0 → 𝐾:(-π[,]π)⟶ℂ)
16 difss 4029 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) ⊆ (-π(,)π)
17 elioore 12618 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ ℝ)
1817ssriv 3893 . . . . . . . . . . . . . . . . 17 (-π(,)π) ⊆ ℝ
1916, 18sstri 3898 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ ℝ
2019a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ ℝ)
21 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)
2219sseli 3885 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) → 𝑥 ∈ ℝ)
2321, 22fmpti 6739 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥):((-π(,)π) ∖ {0})⟶ℝ
2423a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥):((-π(,)π) ∖ {0})⟶ℝ)
25 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))
26 2re 11559 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
2726a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
2822rehalfcld 11732 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (𝑥 / 2) ∈ ℝ)
2928resincld 15329 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑥 / 2)) ∈ ℝ)
3027, 29remulcld 10517 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑥 / 2))) ∈ ℝ)
3125, 30fmpti 6739 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))):((-π(,)π) ∖ {0})⟶ℝ
3231a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))):((-π(,)π) ∖ {0})⟶ℝ)
33 iooretop 23057 . . . . . . . . . . . . . . . 16 (-π(,)π) ∈ (topGen‘ran (,))
3433a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (-π(,)π) ∈ (topGen‘ran (,)))
35 0re 10489 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
36 negpilt0 41087 . . . . . . . . . . . . . . . . 17 -π < 0
37 pipos 24729 . . . . . . . . . . . . . . . . 17 0 < π
38 pire 24727 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ
3938renegcli 10795 . . . . . . . . . . . . . . . . . . 19 -π ∈ ℝ
4039rexri 10546 . . . . . . . . . . . . . . . . . 18 -π ∈ ℝ*
4138rexri 10546 . . . . . . . . . . . . . . . . . 18 π ∈ ℝ*
42 elioo2 12629 . . . . . . . . . . . . . . . . . 18 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → (0 ∈ (-π(,)π) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 < π)))
4340, 41, 42mp2an 688 . . . . . . . . . . . . . . . . 17 (0 ∈ (-π(,)π) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 < π))
4435, 36, 37, 43mpbir3an 1334 . . . . . . . . . . . . . . . 16 0 ∈ (-π(,)π)
4544a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ (-π(,)π))
46 eqid 2795 . . . . . . . . . . . . . . 15 ((-π(,)π) ∖ {0}) = ((-π(,)π) ∖ {0})
47 1ex 10483 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
48 eqid 2795 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)
4947, 48dmmpti 6360 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = ((-π(,)π) ∖ {0})
50 reelprrecn 10475 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ∈ {ℝ, ℂ}
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ℝ ∈ {ℝ, ℂ})
5212sseli 3885 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5352adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
54 1red 10488 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
5551dvmptid 24237 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
56 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . 23 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5756tgioo2 23094 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
58 sncldre 40843 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℝ → {0} ∈ (Clsd‘(topGen‘ran (,))))
5935, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 {0} ∈ (Clsd‘(topGen‘ran (,)))
60 retopon 23055 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
6160toponunii 21208 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ = (topGen‘ran (,))
6261difopn 21326 . . . . . . . . . . . . . . . . . . . . . . . 24 (((-π(,)π) ∈ (topGen‘ran (,)) ∧ {0} ∈ (Clsd‘(topGen‘ran (,)))) → ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,)))
6333, 59, 62mp2an 688 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,)))
6551, 53, 54, 55, 20, 57, 56, 64dvmptres 24243 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1))
6665mptru 1529 . . . . . . . . . . . . . . . . . . . 20 (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)
6766eqcomi 2804 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
6867dmeqi 5659 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
6949, 68eqtr3i 2821 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
7069eqimssi 3946 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
7170a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)))
72 fvex 6551 . . . . . . . . . . . . . . . . . . 19 (cos‘(𝑥 / 2)) ∈ V
73 eqid 2795 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))
7472, 73dmmpti 6360 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = ((-π(,)π) ∖ {0})
75 2cnd 11563 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
7653halfcld 11730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥 / 2) ∈ ℂ)
7776sincld 15316 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘(𝑥 / 2)) ∈ ℂ)
7875, 77mulcld 10507 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → (2 · (sin‘(𝑥 / 2))) ∈ ℂ)
7976coscld 15317 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘(𝑥 / 2)) ∈ ℂ)
80 2cnd 11563 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → 2 ∈ ℂ)
81 2ne0 11589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ≠ 0
8281a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → 2 ≠ 0)
8352, 80, 82divrec2d 11268 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → (𝑥 / 2) = ((1 / 2) · 𝑥))
8483fveq2d 6542 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℝ → (sin‘(𝑥 / 2)) = (sin‘((1 / 2) · 𝑥)))
8584oveq2d 7032 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘((1 / 2) · 𝑥))))
8685mpteq2ia 5051 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
8786oveq2i 7027 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
88 resmpt 5786 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
8912, 88ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
9089eqcomi 2804 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) = ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)
9190oveq2i 7027 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ))
92 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
93 2cnd 11563 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℂ → 2 ∈ ℂ)
94 halfcn 11700 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1 / 2) ∈ ℂ
9594a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ → (1 / 2) ∈ ℂ)
96 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
9795, 96mulcld 10507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℂ → ((1 / 2) · 𝑥) ∈ ℂ)
9897sincld 15316 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℂ → (sin‘((1 / 2) · 𝑥)) ∈ ℂ)
9993, 98mulcld 10507 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑥))) ∈ ℂ)
10092, 99fmpti 6739 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))):ℂ⟶ℂ
101 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
102 2cn 11560 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ ℂ
103102, 94mulcli 10494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (2 · (1 / 2)) ∈ ℂ
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ℂ → (2 · (1 / 2)) ∈ ℂ)
10597coscld 15317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ℂ → (cos‘((1 / 2) · 𝑥)) ∈ ℂ)
106104, 105mulcld 10507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) ∈ ℂ)
107106adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((⊤ ∧ 𝑥 ∈ ℂ) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) ∈ ℂ)
108101, 107dmmptd 6361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⊤ → dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = ℂ)
109108mptru 1529 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = ℂ
11012, 109sseqtr4i 3925 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℝ ⊆ dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
111 dvasinbx 41746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))))
112102, 94, 111mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
113112dmeqi 5659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
114110, 113sseqtr4i 3925 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
115 dvcnre 41741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))):ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))) → (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)) = ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ))
116100, 114, 115mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)) = ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ)
117112reseq1i 5730 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ)
118 resmpt 5786 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))))
11912, 118ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
120102, 81recidi 11219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2 · (1 / 2)) = 1
121120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (2 · (1 / 2)) = 1)
12283eqcomd 2801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℝ → ((1 / 2) · 𝑥) = (𝑥 / 2))
123122fveq2d 6542 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (cos‘((1 / 2) · 𝑥)) = (cos‘(𝑥 / 2)))
124121, 123oveq12d 7034 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) = (1 · (cos‘(𝑥 / 2))))
12552halfcld 11730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℂ)
126125coscld 15317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (cos‘(𝑥 / 2)) ∈ ℂ)
127126mulid2d 10505 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → (1 · (cos‘(𝑥 / 2))) = (cos‘(𝑥 / 2)))
128124, 127eqtrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℝ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) = (cos‘(𝑥 / 2)))
129128mpteq2ia 5051 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
130117, 119, 1293eqtri 2823 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
13191, 116, 1303eqtri 2823 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
13287, 131eqtri 2819 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
133132a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2))))
13451, 78, 79, 133, 20, 57, 56, 64dvmptres 24243 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
135134mptru 1529 . . . . . . . . . . . . . . . . . . . 20 (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))
136135eqcomi 2804 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
137136dmeqi 5659 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
13874, 137eqtr3i 2821 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
139138eqimssi 3946 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
140139a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))))
14117recnd 10515 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ ℂ)
142141ssriv 3893 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)π) ⊆ ℂ
143142a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (-π(,)π) ⊆ ℂ)
144 ssid 3910 . . . . . . . . . . . . . . . . . . . . . . 23 ℂ ⊆ ℂ
145144a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ℂ ⊆ ℂ)
146143, 145idcncfg 41696 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ))
147146mptru 1529 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ)
148 cnlimc 24169 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ⊆ ℂ → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦))))
149142, 148ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦)))
150147, 149mpbi 231 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦))
151150simpri 486 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦)
152 fveq2 6538 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) = ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0))
153 oveq2 7024 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) = ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0))
154152, 153eleq12d 2877 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0)))
155154rspccva 3558 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) ∧ 0 ∈ (-π(,)π)) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0))
156151, 44, 155mp2an 688 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0)
157 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → 𝑥 = 0)
158 eqid 2795 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (-π(,)π) ↦ 𝑥) = (𝑥 ∈ (-π(,)π) ↦ 𝑥)
159 c0ex 10481 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
160157, 158, 159fvmpt 6635 . . . . . . . . . . . . . . . . . 18 (0 ∈ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) = 0)
16144, 160ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) = 0
162 elioore 12618 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
163162recnd 10515 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℂ)
164158, 163fmpti 6739 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ
165164a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ)
166165limcdif 24157 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0))
167166mptru 1529 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0)
168 resmpt 5786 . . . . . . . . . . . . . . . . . . . 20 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
16916, 168ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)
170169oveq1i 7026 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
171167, 170eqtri 2819 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
172156, 161, 1713eltr3i 2895 . . . . . . . . . . . . . . . 16 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
173172a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0))
174 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ ↦ 2) = (𝑥 ∈ ℂ ↦ 2)
175144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℂ → ℂ ⊆ ℂ)
176 2cnd 11563 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℂ → 2 ∈ ℂ)
177175, 176, 175constcncfg 41695 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ → (𝑥 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
178102, 177mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
179 2cnd 11563 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → 2 ∈ ℂ)
180174, 178, 143, 145, 179cncfmptssg 41694 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 2) ∈ ((-π(,)π)–cn→ℂ))
181 sincn 24715 . . . . . . . . . . . . . . . . . . . . . . . 24 sin ∈ (ℂ–cn→ℂ)
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → sin ∈ (ℂ–cn→ℂ))
183 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) = (𝑥 ∈ ℂ ↦ (𝑥 / 2))
184183divccncf 23197 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ))
185102, 81, 184mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ)
186185a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ))
187163adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
188187halfcld 11730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → (𝑥 / 2) ∈ ℂ)
189183, 186, 143, 145, 188cncfmptssg 41694 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (𝑥 / 2)) ∈ ((-π(,)π)–cn→ℂ))
190182, 189cncfmpt1f 23204 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (sin‘(𝑥 / 2))) ∈ ((-π(,)π)–cn→ℂ))
191180, 190mulcncf 23730 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ))
192191mptru 1529 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ)
193 cnlimc 24169 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ⊆ ℂ → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦))))
194142, 193ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦)))
195192, 194mpbi 231 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦))
196195simpri 486 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦)
197 fveq2 6538 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0))
198 oveq2 7024 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) = ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
199197, 198eleq12d 2877 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)))
200199rspccva 3558 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) ∧ 0 ∈ (-π(,)π)) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
201196, 44, 200mp2an 688 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
202 oveq1 7023 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (𝑥 / 2) = (0 / 2))
203102, 81div0i 11222 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 / 2) = 0
204202, 203syl6eq 2847 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑥 / 2) = 0)
205204fveq2d 6542 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 0 → (sin‘(𝑥 / 2)) = (sin‘0))
206 sin0 15335 . . . . . . . . . . . . . . . . . . . . . 22 (sin‘0) = 0
207205, 206syl6eq 2847 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (sin‘(𝑥 / 2)) = 0)
208207oveq2d 7032 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (2 · (sin‘(𝑥 / 2))) = (2 · 0))
209 2t0e0 11654 . . . . . . . . . . . . . . . . . . . 20 (2 · 0) = 0
210208, 209syl6eq 2847 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (2 · (sin‘(𝑥 / 2))) = 0)
211 eqid 2795 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))
212210, 211, 159fvmpt 6635 . . . . . . . . . . . . . . . . . 18 (0 ∈ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) = 0)
21344, 212ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) = 0
214 2cnd 11563 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → 2 ∈ ℂ)
215163halfcld 11730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (-π(,)π) → (𝑥 / 2) ∈ ℂ)
216215sincld 15316 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → (sin‘(𝑥 / 2)) ∈ ℂ)
217214, 216mulcld 10507 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-π(,)π) → (2 · (sin‘(𝑥 / 2))) ∈ ℂ)
218211, 217fmpti 6739 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ
219218a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ)
220219limcdif 24157 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0))
221220mptru 1529 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0)
222 resmpt 5786 . . . . . . . . . . . . . . . . . . . 20 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
22316, 222ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))
224223oveq1i 7026 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
225221, 224eqtri 2819 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
226201, 213, 2253eltr3i 2895 . . . . . . . . . . . . . . . 16 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
227226a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
228 eqidd 2796 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
229 oveq1 7023 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥 / 2) = (𝑦 / 2))
230229fveq2d 6542 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (sin‘(𝑥 / 2)) = (sin‘(𝑦 / 2)))
231230oveq2d 7032 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑦 / 2))))
232231adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑦) → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑦 / 2))))
233 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ((-π(,)π) ∖ {0}))
23426a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
23519sseli 3885 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ℝ)
236235rehalfcld 11732 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ ℝ)
237236resincld 15329 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ∈ ℝ)
238234, 237remulcld 10517 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑦 / 2))) ∈ ℝ)
239228, 232, 233, 238fvmptd 6641 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = (2 · (sin‘(𝑦 / 2))))
240 2cnd 11563 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℂ)
241237recnd 10515 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ∈ ℂ)
24281a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ≠ 0)
243 ioossicc 12672 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)π) ⊆ (-π[,]π)
244 eldifi 4024 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ (-π(,)π))
245243, 244sseldi 3887 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ (-π[,]π))
246 eldifsni 4629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ≠ 0)
247 fourierdlem44 41978 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (-π[,]π) ∧ 𝑦 ≠ 0) → (sin‘(𝑦 / 2)) ≠ 0)
248245, 246, 247syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ≠ 0)
249240, 241, 242, 248mulne0d 11140 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑦 / 2))) ≠ 0)
250239, 249eqnetrd 3051 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ≠ 0)
251250neneqd 2989 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ¬ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0)
252251nrex 3232 . . . . . . . . . . . . . . . . 17 ¬ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0
25325fnmpt 6356 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ ((-π(,)π) ∖ {0})(2 · (sin‘(𝑥 / 2))) ∈ ℝ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0}))
254253, 30mprg 3119 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0})
255 ssid 3910 . . . . . . . . . . . . . . . . . 18 ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})
256 fvelimab 6605 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0}) ∧ ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})) → (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0))
257254, 255, 256mp2an 688 . . . . . . . . . . . . . . . . 17 (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0)
258252, 257mtbir 324 . . . . . . . . . . . . . . . 16 ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0}))
259258a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})))
260 eqidd 2796 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
261229fveq2d 6542 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (cos‘(𝑥 / 2)) = (cos‘(𝑦 / 2)))
262261adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑦) → (cos‘(𝑥 / 2)) = (cos‘(𝑦 / 2)))
263235recnd 10515 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ℂ)
264263halfcld 11730 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ ℂ)
265264coscld 15317 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑦 / 2)) ∈ ℂ)
266260, 262, 233, 265fvmptd 6641 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = (cos‘(𝑦 / 2)))
267236rered 14417 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑦 / 2)) = (𝑦 / 2))
268 halfpire 24733 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π / 2) ∈ ℝ
269268renegcli 10795 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -(π / 2) ∈ ℝ
270269a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ)
271270rexrd 10537 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ*)
272268a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ)
273272rexrd 10537 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ*)
274 picn 24728 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℂ
275 divneg 11180 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
276274, 102, 81, 275mp3an 1453 . . . . . . . . . . . . . . . . . . . . . . . . 25 -(π / 2) = (-π / 2)
27739a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ)
278 2rp 12244 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
279278a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ+)
28040a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ*)
28141a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ*)
282 ioogtlb 41312 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑦 ∈ (-π(,)π)) → -π < 𝑦)
283280, 281, 244, 282syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π < 𝑦)
284277, 235, 279, 283ltdiv1dd 12338 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (-π / 2) < (𝑦 / 2))
285276, 284eqbrtrid 4997 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) < (𝑦 / 2))
28638a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ)
287 iooltub 41328 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑦 ∈ (-π(,)π)) → 𝑦 < π)
288280, 281, 244, 287syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 < π)
289235, 286, 279, 288ltdiv1dd 12338 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) < (π / 2))
290271, 273, 236, 285, 289eliood 41315 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ (-(π / 2)(,)(π / 2)))
291267, 290eqeltrd 2883 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑦 / 2)) ∈ (-(π / 2)(,)(π / 2)))
292 cosne0 24795 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 / 2) ∈ ℂ ∧ (ℜ‘(𝑦 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝑦 / 2)) ≠ 0)
293264, 291, 292syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑦 / 2)) ≠ 0)
294266, 293eqnetrd 3051 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) ≠ 0)
295294neneqd 2989 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ¬ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0)
296295nrex 3232 . . . . . . . . . . . . . . . . . 18 ¬ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0
29772, 73fnmpti 6359 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) Fn ((-π(,)π) ∖ {0})
298 fvelimab 6605 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) Fn ((-π(,)π) ∖ {0}) ∧ ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})) → (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0))
299297, 255, 298mp2an 688 . . . . . . . . . . . . . . . . . 18 (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0)
300296, 299mtbir 324 . . . . . . . . . . . . . . . . 17 ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0}))
301135imaeq1i 5803 . . . . . . . . . . . . . . . . . 18 ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0}))
302301eleq2i 2874 . . . . . . . . . . . . . . . . 17 (0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})) ↔ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})))
303300, 302mtbir 324 . . . . . . . . . . . . . . . 16 ¬ 0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0}))
304303a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ¬ 0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})))
305 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2)))
306 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2))))
30719sseli 3885 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ℝ)
308307recnd 10515 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ℂ)
309308halfcld 11730 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ ℂ)
310309coscld 15317 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ ℂ)
311307rehalfcld 11732 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ ℝ)
312311rered 14417 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑠 / 2)) = (𝑠 / 2))
313269a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ)
314313rexrd 10537 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ*)
315268a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ)
316315rexrd 10537 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ*)
31738a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ)
318317renegcld 10915 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ)
319278a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ+)
32040a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ*)
32141a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ*)
322 eldifi 4024 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ (-π(,)π))
323 ioogtlb 41312 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π(,)π)) → -π < 𝑠)
324320, 321, 322, 323syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π < 𝑠)
325318, 307, 319, 324ltdiv1dd 12338 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (-π / 2) < (𝑠 / 2))
326276, 325eqbrtrid 4997 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) < (𝑠 / 2))
327 iooltub 41328 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π(,)π)) → 𝑠 < π)
328320, 321, 322, 327syl3anc 1364 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 < π)
329307, 317, 319, 328ltdiv1dd 12338 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) < (π / 2))
330314, 316, 311, 326, 329eliood 41315 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ (-(π / 2)(,)(π / 2)))
331312, 330eqeltrd 2883 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑠 / 2)) ∈ (-(π / 2)(,)(π / 2)))
332 cosne0 24795 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑠 / 2) ∈ ℂ ∧ (ℜ‘(𝑠 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝑠 / 2)) ≠ 0)
333309, 331, 332syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ≠ 0)
334333neneqd 2989 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ (cos‘(𝑠 / 2)) = 0)
335311recoscld 15330 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ ℝ)
336 elsng 4486 . . . . . . . . . . . . . . . . . . . . 21 ((cos‘(𝑠 / 2)) ∈ ℝ → ((cos‘(𝑠 / 2)) ∈ {0} ↔ (cos‘(𝑠 / 2)) = 0))
337335, 336syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((cos‘(𝑠 / 2)) ∈ {0} ↔ (cos‘(𝑠 / 2)) = 0))
338334, 337mtbird 326 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ (cos‘(𝑠 / 2)) ∈ {0})
339310, 338eldifd 3870 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
340339adantl 482 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑠 ∈ ((-π(,)π) ∖ {0})) → (cos‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
341309ad2antrl 724 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ (𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ (𝑠 / 2) ≠ 0)) → (𝑠 / 2) ∈ ℂ)
342 cosf 15311 . . . . . . . . . . . . . . . . . . . 20 cos:ℂ⟶ℂ
343342a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → cos:ℂ⟶ℂ)
344343ffvelrnda 6716 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
345 eqid 2795 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ ↦ (𝑠 / 2)) = (𝑠 ∈ ℂ ↦ (𝑠 / 2))
346345divccncf 23197 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ))
347102, 81, 346mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ)
348347a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ))
349141adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑠 ∈ (-π(,)π)) → 𝑠 ∈ ℂ)
350349halfcld 11730 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑠 ∈ (-π(,)π)) → (𝑠 / 2) ∈ ℂ)
351345, 348, 143, 145, 350cncfmptssg 41694 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ∈ ((-π(,)π)–cn→ℂ))
352 oveq1 7023 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
353352, 203syl6eq 2847 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → (𝑠 / 2) = 0)
354351, 45, 353cnmptlimc 24171 . . . . . . . . . . . . . . . . . . 19 (⊤ → 0 ∈ ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0))
355 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) = (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2))
356141halfcld 11730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) → (𝑠 / 2) ∈ ℂ)
357355, 356fmpti 6739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)):(-π(,)π)⟶ℂ
358357a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)):(-π(,)π)⟶ℂ)
359358limcdif 24157 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0))
360359mptru 1529 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0)
361 resmpt 5786 . . . . . . . . . . . . . . . . . . . . . 22 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)))
36216, 361ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2))
363362oveq1i 7026 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0)
364360, 363eqtri 2819 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0)
365354, 364syl6eleq 2893 . . . . . . . . . . . . . . . . . 18 (⊤ → 0 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0))
366 ffn 6382 . . . . . . . . . . . . . . . . . . . . . . 23 (cos:ℂ⟶ℂ → cos Fn ℂ)
367342, 366ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 cos Fn ℂ
368 dffn5 6592 . . . . . . . . . . . . . . . . . . . . . 22 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
369367, 368mpbi 231 . . . . . . . . . . . . . . . . . . . . 21 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
370 coscn 24716 . . . . . . . . . . . . . . . . . . . . 21 cos ∈ (ℂ–cn→ℂ)
371369, 370eqeltrri 2880 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ)
372371a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ))
373 0cnd 10480 . . . . . . . . . . . . . . . . . . 19 (⊤ → 0 ∈ ℂ)
374 fveq2 6538 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (cos‘𝑥) = (cos‘0))
375 cos0 15336 . . . . . . . . . . . . . . . . . . . 20 (cos‘0) = 1
376374, 375syl6eq 2847 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (cos‘𝑥) = 1)
377372, 373, 376cnmptlimc 24171 . . . . . . . . . . . . . . . . . 18 (⊤ → 1 ∈ ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) lim 0))
378 fveq2 6538 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑠 / 2) → (cos‘𝑥) = (cos‘(𝑠 / 2)))
379 fveq2 6538 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 / 2) = 0 → (cos‘(𝑠 / 2)) = (cos‘0))
380379, 375syl6eq 2847 . . . . . . . . . . . . . . . . . . 19 ((𝑠 / 2) = 0 → (cos‘(𝑠 / 2)) = 1)
381380ad2antll 725 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ (𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ (𝑠 / 2) = 0)) → (cos‘(𝑠 / 2)) = 1)
382341, 344, 365, 377, 378, 381limcco 24174 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2))) lim 0))
383 ax-1ne0 10452 . . . . . . . . . . . . . . . . . 18 1 ≠ 0
384383a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ≠ 0)
385305, 306, 340, 382, 384reclimc 41476 . . . . . . . . . . . . . . . 16 (⊤ → (1 / 1) ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) lim 0))
386 1div1e1 11178 . . . . . . . . . . . . . . . 16 (1 / 1) = 1
38766fveq1i 6539 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)‘𝑠)
388 eqidd 2796 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1))
389 eqidd 2796 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → 1 = 1)
390 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ((-π(,)π) ∖ {0}))
391 1red 10488 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 1 ∈ ℝ)
392388, 389, 390, 391fvmptd 6641 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)‘𝑠) = 1)
393387, 392syl5req 2844 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 1 = ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠))
394135a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
395 oveq1 7023 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2))
396395fveq2d 6542 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑠 → (cos‘(𝑥 / 2)) = (cos‘(𝑠 / 2)))
397396adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (cos‘(𝑥 / 2)) = (cos‘(𝑠 / 2)))
398394, 397, 390, 335fvmptd 6641 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠) = (cos‘(𝑠 / 2)))
399398eqcomd 2801 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) = ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))
400393, 399oveq12d 7034 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (1 / (cos‘(𝑠 / 2))) = (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠)))
401400mpteq2ia 5051 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠)))
402401oveq1i 7026 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))) lim 0)
403385, 386, 4023eltr3g 2899 . . . . . . . . . . . . . . 15 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))) lim 0))
40420, 24, 32, 34, 45, 46, 71, 140, 173, 227, 259, 304, 403lhop 24296 . . . . . . . . . . . . . 14 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0))
405404mptru 1529 . . . . . . . . . . . . 13 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0)
406 eqidd 2796 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
407 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → 𝑥 = 𝑠)
408406, 407, 390, 307fvmptd 6641 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) = 𝑠)
409 eqidd 2796 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
410407oveq1d 7031 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (𝑥 / 2) = (𝑠 / 2))
411410fveq2d 6542 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2)))
412411oveq2d 7032 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑠 / 2))))
41326a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
414311resincld 15329 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑠 / 2)) ∈ ℝ)
415413, 414remulcld 10517 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
416409, 412, 390, 415fvmptd 6641 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠) = (2 · (sin‘(𝑠 / 2))))
417408, 416oveq12d 7034 . . . . . . . . . . . . . . 15 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠)) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
418417mpteq2ia 5051 . . . . . . . . . . . . . 14 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
419418oveq1i 7026 . . . . . . . . . . . . 13 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
420405, 419eleqtri 2881 . . . . . . . . . . . 12 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
42110oveq1i 7026 . . . . . . . . . . . . . 14 (𝐾 lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
42210feq1i 6373 . . . . . . . . . . . . . . . . . . 19 (𝐾:(-π[,]π)⟶ℂ ↔ (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ)
42314, 422mpbi 231 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ
424423a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ)
425243a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (-π(,)π) ⊆ (-π[,]π))
426 iccssre 12668 . . . . . . . . . . . . . . . . . . . 20 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
42739, 38, 426mp2an 688 . . . . . . . . . . . . . . . . . . 19 (-π[,]π) ⊆ ℝ
428427a1i 11 . . . . . . . . . . . . . . . . . 18 (⊤ → (-π[,]π) ⊆ ℝ)
429428, 12syl6ss 3901 . . . . . . . . . . . . . . . . 17 (⊤ → (-π[,]π) ⊆ ℂ)
430 eqid 2795 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0}))
43139, 35, 36ltleii 10610 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -π ≤ 0
43235, 38, 37ltleii 10610 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ π
43339, 38elicc2i 12652 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
43435, 431, 432, 433mpbir3an 1334 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ (-π[,]π)
435159snss 4625 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ (-π[,]π) ↔ {0} ⊆ (-π[,]π))
436434, 435mpbi 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 {0} ⊆ (-π[,]π)
437 ssequn2 4080 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({0} ⊆ (-π[,]π) ↔ ((-π[,]π) ∪ {0}) = (-π[,]π))
438436, 437mpbi 231 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-π[,]π) ∪ {0}) = (-π[,]π)
439438oveq2i 7027 . . . . . . . . . . . . . . . . . . . . . . 23 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
440 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . . . 25 (topGen‘ran (,)) = (topGen‘ran (,))
44156, 440rerest 23095 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-π[,]π) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π)))
442427, 441ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ((TopOpen‘ℂfld) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π))
443439, 442eqtri 2819 . . . . . . . . . . . . . . . . . . . . . 22 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((topGen‘ran (,)) ↾t (-π[,]π))
444443fveq2i 6541 . . . . . . . . . . . . . . . . . . . . 21 (int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0}))) = (int‘((topGen‘ran (,)) ↾t (-π[,]π)))
445159snss 4625 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (-π(,)π) ↔ {0} ⊆ (-π(,)π))
44644, 445mpbi 231 . . . . . . . . . . . . . . . . . . . . . 22 {0} ⊆ (-π(,)π)
447 ssequn2 4080 . . . . . . . . . . . . . . . . . . . . . 22 ({0} ⊆ (-π(,)π) ↔ ((-π(,)π) ∪ {0}) = (-π(,)π))
448446, 447mpbi 231 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ∪ {0}) = (-π(,)π)
449444, 448fveq12i 6544 . . . . . . . . . . . . . . . . . . . 20 ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0})) = ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π))
450 resttopon 21453 . . . . . . . . . . . . . . . . . . . . . . 23 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (-π[,]π) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π)))
45160, 427, 450mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π))
452451topontopi 21207 . . . . . . . . . . . . . . . . . . . . 21 ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top
453 retop 23053 . . . . . . . . . . . . . . . . . . . . . . . 24 (topGen‘ran (,)) ∈ Top
454 ovex 7048 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,]π) ∈ V
455453, 454pm3.2i 471 . . . . . . . . . . . . . . . . . . . . . . 23 ((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ∈ V)
456 ssid 3910 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)π) ⊆ (-π(,)π)
45733, 243, 4563pm3.2i 1332 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π(,)π) ∈ (topGen‘ran (,)) ∧ (-π(,)π) ⊆ (-π[,]π) ∧ (-π(,)π) ⊆ (-π(,)π))
458 restopnb 21467 . . . . . . . . . . . . . . . . . . . . . . 23 ((((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ∈ V) ∧ ((-π(,)π) ∈ (topGen‘ran (,)) ∧ (-π(,)π) ⊆ (-π[,]π) ∧ (-π(,)π) ⊆ (-π(,)π))) → ((-π(,)π) ∈ (topGen‘ran (,)) ↔ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))))
459455, 457, 458mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 ((-π(,)π) ∈ (topGen‘ran (,)) ↔ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π)))
46033, 459mpbi 231 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))
461 isopn3i 21374 . . . . . . . . . . . . . . . . . . . . 21 ((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))) → ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π)) = (-π(,)π))
462452, 460, 461mp2an 688 . . . . . . . . . . . . . . . . . . . 20 ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π)) = (-π(,)π)
463 eqid 2795 . . . . . . . . . . . . . . . . . . . 20 (-π(,)π) = (-π(,)π)
464449, 462, 4633eqtrri 2824 . . . . . . . . . . . . . . . . . . 19 (-π(,)π) = ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0}))
46544, 464eleqtri 2881 . . . . . . . . . . . . . . . . . 18 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0}))
466465a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0})))
467424, 425, 429, 56, 430, 466limcres 24167 . . . . . . . . . . . . . . . 16 (⊤ → (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0))
468467mptru 1529 . . . . . . . . . . . . . . 15 (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
469468eqcomi 2804 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0)
470 resmpt 5786 . . . . . . . . . . . . . . . 16 ((-π(,)π) ⊆ (-π[,]π) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
471243, 470ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
472471oveq1i 7026 . . . . . . . . . . . . . 14 (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
473421, 469, 4723eqtri 2823 . . . . . . . . . . . . 13 (𝐾 lim 0) = ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
474 eqid 2795 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
475 iftrue 4387 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = 1)
476 1cnd 10482 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → 1 ∈ ℂ)
477475, 476eqeltrd 2883 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
478477adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π(,)π) ∧ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
479 iffalse 4390 . . . . . . . . . . . . . . . . . . . 20 𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
480479adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
481141adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ℂ)
482 2cnd 11563 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℂ)
483481halfcld 11730 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (𝑠 / 2) ∈ ℂ)
484483sincld 15316 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℂ)
485482, 484mulcld 10507 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
48681a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 2 ≠ 0)
487243sseli 3885 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ (-π[,]π))
488 neqne 2992 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 = 0 → 𝑠 ≠ 0)
489 fourierdlem44 41978 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
490487, 488, 489syl2an 595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ≠ 0)
491482, 484, 486, 490mulne0d 11140 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
492481, 485, 491divcld 11264 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
493480, 492eqeltrd 2883 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
494478, 493pm2.61dan 809 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π(,)π) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
495474, 494fmpti 6739 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π(,)π)⟶ℂ
496495a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π(,)π)⟶ℂ)
497496limcdif 24157 . . . . . . . . . . . . . 14 (⊤ → ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0))
498497mptru 1529 . . . . . . . . . . . . 13 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0)
499 resmpt 5786 . . . . . . . . . . . . . . . 16 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
50016, 499ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
501 eldifn 4025 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ 𝑠 ∈ {0})
502 velsn 4488 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ {0} ↔ 𝑠 = 0)
503501, 502sylnib 329 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ 𝑠 = 0)
504503, 479syl 17 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
505504mpteq2ia 5051 . . . . . . . . . . . . . . 15 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
506500, 505eqtri 2819 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
507506oveq1i 7026 . . . . . . . . . . . . 13 (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
508473, 498, 5073eqtrri 2824 . . . . . . . . . . . 12 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0) = (𝐾 lim 0)
509420, 508eleqtri 2881 . . . . . . . . . . 11 1 ∈ (𝐾 lim 0)
510509a1i 11 . . . . . . . . . 10 (𝑠 = 0 → 1 ∈ (𝐾 lim 0))
511 fveq2 6538 . . . . . . . . . . 11 (𝑠 = 0 → (𝐾𝑠) = (𝐾‘0))
512475, 10, 47fvmpt 6635 . . . . . . . . . . . 12 (0 ∈ (-π[,]π) → (𝐾‘0) = 1)
513434, 512ax-mp 5 . . . . . . . . . . 11 (𝐾‘0) = 1
514511, 513syl6eq 2847 . . . . . . . . . 10 (𝑠 = 0 → (𝐾𝑠) = 1)
515 oveq2 7024 . . . . . . . . . 10 (𝑠 = 0 → (𝐾 lim 𝑠) = (𝐾 lim 0))
516510, 514, 5153eltr4d 2898 . . . . . . . . 9 (𝑠 = 0 → (𝐾𝑠) ∈ (𝐾 lim 𝑠))
517427, 12sstri 3898 . . . . . . . . . . 11 (-π[,]π) ⊆ ℂ
518517a1i 11 . . . . . . . . . 10 (𝑠 = 0 → (-π[,]π) ⊆ ℂ)
51938a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → π ∈ ℝ)
520519renegcld 10915 . . . . . . . . . . 11 (𝑠 = 0 → -π ∈ ℝ)
521 id 22 . . . . . . . . . . . 12 (𝑠 = 0 → 𝑠 = 0)
52235a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → 0 ∈ ℝ)
523521, 522eqeltrd 2883 . . . . . . . . . . 11 (𝑠 = 0 → 𝑠 ∈ ℝ)
524431, 521breqtrrid 5000 . . . . . . . . . . 11 (𝑠 = 0 → -π ≤ 𝑠)
525521, 432syl6eqbr 5001 . . . . . . . . . . 11 (𝑠 = 0 → 𝑠 ≤ π)
526520, 519, 523, 524, 525eliccd 41321 . . . . . . . . . 10 (𝑠 = 0 → 𝑠 ∈ (-π[,]π))
52757oveq1i 7026 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (-π[,]π)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π))
52856cnfldtop 23075 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ Top
529 reex 10474 . . . . . . . . . . . . 13 ℝ ∈ V
530 restabs 21457 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (-π[,]π) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π)))
531528, 427, 529, 530mp3an 1453 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
532527, 531eqtri 2819 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
53356, 532cnplimc 24168 . . . . . . . . . 10 (((-π[,]π) ⊆ ℂ ∧ 𝑠 ∈ (-π[,]π)) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ (𝐾𝑠) ∈ (𝐾 lim 𝑠))))
534518, 526, 533syl2anc 584 . . . . . . . . 9 (𝑠 = 0 → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ (𝐾𝑠) ∈ (𝐾 lim 𝑠))))
53515, 516, 534mpbir2and 709 . . . . . . . 8 (𝑠 = 0 → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
536535adantl 482 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 = 0) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
537 simpl 483 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (-π[,]π))
538502notbii 321 . . . . . . . . . . . . 13 𝑠 ∈ {0} ↔ ¬ 𝑠 = 0)
539538biimpri 229 . . . . . . . . . . . 12 𝑠 = 0 → ¬ 𝑠 ∈ {0})
540539adantl 482 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → ¬ 𝑠 ∈ {0})
541537, 540eldifd 3870 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
542 fveq2 6538 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥) = ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
543542eleq2d 2868 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
544429ssdifssd 4040 . . . . . . . . . . . . . . . . 17 (⊤ → ((-π[,]π) ∖ {0}) ⊆ ℂ)
545544, 145idcncfg 41696 . . . . . . . . . . . . . . . 16 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ 𝑠) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
546 eqid 2795 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2))))
547 2cnd 11563 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 2 ∈ ℂ)
548 eldifi 4024 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ (-π[,]π))
549517, 548sseldi 3887 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ ℂ)
550549halfcld 11730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 / 2) ∈ ℂ)
551550sincld 15316 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (sin‘(𝑠 / 2)) ∈ ℂ)
552547, 551mulcld 10507 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
55381a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 2 ≠ 0)
554 eldifsni 4629 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ≠ 0)
555548, 554, 489syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (sin‘(𝑠 / 2)) ≠ 0)
556547, 551, 553, 555mulne0d 11140 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
557556neneqd 2989 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ (2 · (sin‘(𝑠 / 2))) = 0)
558 elsng 4486 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · (sin‘(𝑠 / 2))) ∈ ℂ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
559552, 558syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
560557, 559mtbird 326 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ (2 · (sin‘(𝑠 / 2))) ∈ {0})
561552, 560eldifd 3870 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
562546, 561fmpti 6739 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0})
563 difss 4029 . . . . . . . . . . . . . . . . . . 19 (ℂ ∖ {0}) ⊆ ℂ
564 eqid 2795 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ ↦ 2) = (𝑠 ∈ ℂ ↦ 2)
565175, 176, 175constcncfg 41695 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℂ → (𝑠 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
566102, 565mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
567 2cnd 11563 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → 2 ∈ ℂ)
568564, 566, 544, 145, 567cncfmptssg 41694 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ 2) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
569549, 547, 553divrecd 11267 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 / 2) = (𝑠 · (1 / 2)))
570569mpteq2ia 5051 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / 2)) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 · (1 / 2)))
571 eqid 2795 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ℂ ↦ (1 / 2)) = (𝑠 ∈ ℂ ↦ (1 / 2))
572144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 / 2) ∈ ℂ → ℂ ⊆ ℂ)
573 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 / 2) ∈ ℂ → (1 / 2) ∈ ℂ)
574572, 573, 572constcncfg 41695 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 2) ∈ ℂ → (𝑠 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
57594, 574mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → (𝑠 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
57694a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⊤ ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → (1 / 2) ∈ ℂ)
577571, 575, 544, 145, 576cncfmptssg 41694 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (1 / 2)) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
578545, 577mulcncf 23730 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 · (1 / 2))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
579570, 578syl5eqel 2887 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / 2)) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
580182, 579cncfmpt1f 23204 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (sin‘(𝑠 / 2))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
581568, 580mulcncf 23730 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
582581mptru 1529 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)
583 cncffvrn 23189 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)) → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0})))
584563, 582, 583mp2an 688 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0}))
585562, 584mpbir 232 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0}))
586585a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})))
587545, 586divcncf 23731 . . . . . . . . . . . . . . 15 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
588587mptru 1529 . . . . . . . . . . . . . 14 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)
589428ssdifssd 4040 . . . . . . . . . . . . . . . . 17 (⊤ → ((-π[,]π) ∖ {0}) ⊆ ℝ)
590589mptru 1529 . . . . . . . . . . . . . . . 16 ((-π[,]π) ∖ {0}) ⊆ ℝ
591590, 12sstri 3898 . . . . . . . . . . . . . . 15 ((-π[,]π) ∖ {0}) ⊆ ℂ
59257oveq1i 7026 . . . . . . . . . . . . . . . . 17 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0}))
593 restabs 21457 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0})))
594528, 590, 529, 593mp3an 1453 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0}))
595592, 594eqtri 2819 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0}))
596 unicntop 23077 . . . . . . . . . . . . . . . . . . 19 ℂ = (TopOpen‘ℂfld)
597596restid 16536 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
598528, 597ax-mp 5 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
599598eqcomi 2804 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
60056, 595, 599cncfcn 23200 . . . . . . . . . . . . . . 15 ((((-π[,]π) ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((-π[,]π) ∖ {0})–cn→ℂ) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)))
601591, 144, 600mp2an 688 . . . . . . . . . . . . . 14 (((-π[,]π) ∖ {0})–cn→ℂ) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld))
602588, 601eleqtri 2881 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld))
603 resttopon 21453 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((-π[,]π) ∖ {0}) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0})))
60460, 590, 603mp2an 688 . . . . . . . . . . . . . 14 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0}))
60556cnfldtopon 23074 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
606 cncnp 21572 . . . . . . . . . . . . . 14 ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0})) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥))))
607604, 605, 606mp2an 688 . . . . . . . . . . . . 13 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥)))
608602, 607mpbi 231 . . . . . . . . . . . 12 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥))
609608simpri 486 . . . . . . . . . . 11 𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥)
610543, 609vtoclri 3528 . . . . . . . . . 10 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
611541, 610syl 17 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
61210reseq1i 5730 . . . . . . . . . 10 (𝐾 ↾ ((-π[,]π) ∖ {0})) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0}))
613 difss 4029 . . . . . . . . . . 11 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
614 resmpt 5786 . . . . . . . . . . 11 (((-π[,]π) ∖ {0}) ⊆ (-π[,]π) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
615613, 614ax-mp 5 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
616 eldifn 4025 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ 𝑠 ∈ {0})
617616, 502sylnib 329 . . . . . . . . . . . 12 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ 𝑠 = 0)
618617, 479syl 17 . . . . . . . . . . 11 (𝑠 ∈ ((-π[,]π) ∖ {0}) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
619618mpteq2ia 5051 . . . . . . . . . 10 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
620612, 615, 6193eqtri 2823 . . . . . . . . 9 (𝐾 ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
621 restabs 21457 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π) ∧ (-π[,]π) ∈ V) → (((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) = ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})))
622453, 613, 454, 621mp3an 1453 . . . . . . . . . . 11 (((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) = ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0}))
623622oveq1i 7026 . . . . . . . . . 10 ((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))
624623fveq1i 6539 . . . . . . . . 9 (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠) = ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)
625611, 620, 6243eltr4g 2900 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
626452, 613pm3.2i 471 . . . . . . . . . 10 (((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π))
627626a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)))
628 ssdif 4037 . . . . . . . . . . . . . 14 ((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ {0}) ⊆ (ℝ ∖ {0}))
629427, 628ax-mp 5 . . . . . . . . . . . . 13 ((-π[,]π) ∖ {0}) ⊆ (ℝ ∖ {0})
630629, 541sseldi 3887 . . . . . . . . . . . 12 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (ℝ ∖ {0}))
631 sscon 4036 . . . . . . . . . . . . . . . . 17 ({0} ⊆ (-π[,]π) → (ℝ ∖ (-π[,]π)) ⊆ (ℝ ∖ {0}))
632436, 631ax-mp 5 . . . . . . . . . . . . . . . 16 (ℝ ∖ (-π[,]π)) ⊆ (ℝ ∖ {0})
633629, 632unssi 4082 . . . . . . . . . . . . . . 15 (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))) ⊆ (ℝ ∖ {0})
634 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
635 eldifn 4025 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (ℝ ∖ {0}) → ¬ 𝑠 ∈ {0})
636635adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → ¬ 𝑠 ∈ {0})
637634, 636eldifd 3870 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
638 elun1 4073 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
639637, 638syl 17 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
640 eldifi 4024 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (ℝ ∖ {0}) → 𝑠 ∈ ℝ)
641640adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
642 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → ¬ 𝑠 ∈ (-π[,]π))
643641, 642eldifd 3870 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (ℝ ∖ (-π[,]π)))
644 elun2 4074 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (ℝ ∖ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
645643, 644syl 17 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
646639, 645pm2.61dan 809 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (ℝ ∖ {0}) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
647646ssriv 3893 . . . . . . . . . . . . . . 15 (ℝ ∖ {0}) ⊆ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))
648633, 647eqssi 3905 . . . . . . . . . . . . . 14 (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))) = (ℝ ∖ {0})
649648fveq2i 6541 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) = ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0}))
65061cldopn 21323 . . . . . . . . . . . . . . 15 ({0} ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ {0}) ∈ (topGen‘ran (,)))
65159, 650ax-mp 5 . . . . . . . . . . . . . 14 (ℝ ∖ {0}) ∈ (topGen‘ran (,))
652 isopn3i 21374 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (ℝ ∖ {0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0})) = (ℝ ∖ {0}))
653453, 651, 652mp2an 688 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0})) = (ℝ ∖ {0})
654649, 653eqtri 2819 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) = (ℝ ∖ {0})
655630, 654syl6eleqr 2894 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))))
656655, 537elind 4092 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π)))
657 eqid 2795 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π))
65861, 657restntr 21474 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ⊆ ℝ ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)) → ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) = (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π)))
659453, 427, 613, 658mp3an 1453 . . . . . . . . . 10 ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) = (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π))
660656, 659syl6eleqr 2894 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})))
66114a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝐾:(-π[,]π)⟶ℂ)
662451toponunii 21208 . . . . . . . . . 10 (-π[,]π) = ((topGen‘ran (,)) ↾t (-π[,]π))
663662, 596cnprest 21581 . . . . . . . . 9 (((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)) ∧ (𝑠 ∈ ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) ∧ 𝐾:(-π[,]π)⟶ℂ)) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
664627, 660, 661, 663syl12anc 833 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
665625, 664mpbird 258 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
666536, 665pm2.61dan 809 . . . . . 6 (𝑠 ∈ (-π[,]π) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
667666rgen 3115 . . . . 5 𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠)
668 cncnp 21572 . . . . . 6 ((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ ∀𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))))
669451, 605, 668mp2an 688 . . . . 5 (𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ ∀𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠)))
67014, 667, 669mpbir2an 707 . . . 4 𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld))
67156, 532, 599cncfcn 23200 . . . . . 6 (((-π[,]π) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℂ) = (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)))
672517, 144, 671mp2an 688 . . . . 5 ((-π[,]π)–cn→ℂ) = (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld))
673672eqcomi 2804 . . . 4 (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) = ((-π[,]π)–cn→ℂ)
674670, 673eleqtri 2881 . . 3 𝐾 ∈ ((-π[,]π)–cn→ℂ)
675 cncffvrn 23189 . . 3 ((ℝ ⊆ ℂ ∧ 𝐾 ∈ ((-π[,]π)–cn→ℂ)) → (𝐾 ∈ ((-π[,]π)–cn→ℝ) ↔ 𝐾:(-π[,]π)⟶ℝ))
67612, 674, 675mp2an 688 . 2 (𝐾 ∈ ((-π[,]π)–cn→ℝ) ↔ 𝐾:(-π[,]π)⟶ℝ)
67711, 676mpbir 232 1 𝐾 ∈ ((-π[,]π)–cn→ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396  w3a 1080   = wceq 1522  wtru 1523  wcel 2081  wne 2984  wral 3105  wrex 3106  Vcvv 3437  cdif 3856  cun 3857  cin 3858  wss 3859  ifcif 4381  {csn 4472  {cpr 4474   class class class wbr 4962  cmpt 5041  dom cdm 5443  ran crn 5444  cres 5445  cima 5446   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383  1c1 10384   · cmul 10388  *cxr 10520   < clt 10521  cle 10522  -cneg 10718   / cdiv 11145  2c2 11540  +crp 12239  (,)cioo 12588  [,]cicc 12591  cre 14290  sincsin 15250  cosccos 15251  πcpi 15253  t crest 16523  TopOpenctopn 16524  topGenctg 16540  fldccnfld 20227  Topctop 21185  TopOnctopon 21202  Clsdccld 21308  intcnt 21309   Cn ccn 21516   CnP ccnp 21517  cnccncf 23167   lim climc 24143   D cdv 24144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ioc 12593  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-fac 13484  df-bc 13513  df-hash 13541  df-shft 14260  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-limsup 14662  df-clim 14679  df-rlim 14680  df-sum 14877  df-ef 15254  df-sin 15256  df-cos 15257  df-pi 15259  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-hom 16418  df-cco 16419  df-rest 16525  df-topn 16526  df-0g 16544  df-gsum 16545  df-topgen 16546  df-pt 16547  df-prds 16550  df-xrs 16604  df-qtop 16609  df-imas 16610  df-xps 16612  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-mulg 17982  df-cntz 18188  df-cmn 18635  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-fbas 20224  df-fg 20225  df-cnfld 20228  df-top 21186  df-topon 21203  df-topsp 21225  df-bases 21238  df-cld 21311  df-ntr 21312  df-cls 21313  df-nei 21390  df-lp 21428  df-perf 21429  df-cn 21519  df-cnp 21520  df-t1 21606  df-haus 21607  df-cmp 21679  df-tx 21854  df-hmeo 22047  df-fil 22138  df-fm 22230  df-flim 22231  df-flf 22232  df-xms 22613  df-ms 22614  df-tms 22615  df-cncf 23169  df-limc 24147  df-dv 24148
This theorem is referenced by:  fourierdlem77  42010  fourierdlem78  42011  fourierdlem85  42018  fourierdlem88  42021
  Copyright terms: Public domain W3C validator