Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem62 Structured version   Visualization version   GIF version

Theorem fourierdlem62 46166
Description: The function 𝐾 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem62.k 𝐾 = (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))))
Assertion
Ref Expression
fourierdlem62 𝐾 ∈ ((-π[,]π)–cn→ℝ)

Proof of Theorem fourierdlem62
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem62.k . . . 4 𝐾 = (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))))
2 eqeq1 2733 . . . . . 6 (𝑦 = 𝑠 → (𝑦 = 0 ↔ 𝑠 = 0))
3 id 22 . . . . . . 7 (𝑦 = 𝑠𝑦 = 𝑠)
4 oveq1 7394 . . . . . . . . 9 (𝑦 = 𝑠 → (𝑦 / 2) = (𝑠 / 2))
54fveq2d 6862 . . . . . . . 8 (𝑦 = 𝑠 → (sin‘(𝑦 / 2)) = (sin‘(𝑠 / 2)))
65oveq2d 7403 . . . . . . 7 (𝑦 = 𝑠 → (2 · (sin‘(𝑦 / 2))) = (2 · (sin‘(𝑠 / 2))))
73, 6oveq12d 7405 . . . . . 6 (𝑦 = 𝑠 → (𝑦 / (2 · (sin‘(𝑦 / 2)))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
82, 7ifbieq2d 4515 . . . . 5 (𝑦 = 𝑠 → if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2))))) = if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
98cbvmptv 5211 . . . 4 (𝑦 ∈ (-π[,]π) ↦ if(𝑦 = 0, 1, (𝑦 / (2 · (sin‘(𝑦 / 2)))))) = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
101, 9eqtri 2752 . . 3 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
1110fourierdlem43 46148 . 2 𝐾:(-π[,]π)⟶ℝ
12 ax-resscn 11125 . . 3 ℝ ⊆ ℂ
13 fss 6704 . . . . . 6 ((𝐾:(-π[,]π)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐾:(-π[,]π)⟶ℂ)
1411, 12, 13mp2an 692 . . . . 5 𝐾:(-π[,]π)⟶ℂ
1514a1i 11 . . . . . . . . 9 (𝑠 = 0 → 𝐾:(-π[,]π)⟶ℂ)
16 difss 4099 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) ⊆ (-π(,)π)
17 elioore 13336 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ ℝ)
1817ssriv 3950 . . . . . . . . . . . . . . . . 17 (-π(,)π) ⊆ ℝ
1916, 18sstri 3956 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ ℝ
2019a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ ℝ)
21 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)
2219sseli 3942 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) → 𝑥 ∈ ℝ)
2321, 22fmpti 7084 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥):((-π(,)π) ∖ {0})⟶ℝ
2423a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥):((-π(,)π) ∖ {0})⟶ℝ)
25 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))
26 2re 12260 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℝ
2726a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
2822rehalfcld 12429 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (𝑥 / 2) ∈ ℝ)
2928resincld 16111 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑥 / 2)) ∈ ℝ)
3027, 29remulcld 11204 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑥 / 2))) ∈ ℝ)
3125, 30fmpti 7084 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))):((-π(,)π) ∖ {0})⟶ℝ
3231a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))):((-π(,)π) ∖ {0})⟶ℝ)
33 iooretop 24653 . . . . . . . . . . . . . . . 16 (-π(,)π) ∈ (topGen‘ran (,))
3433a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (-π(,)π) ∈ (topGen‘ran (,)))
35 0re 11176 . . . . . . . . . . . . . . . . 17 0 ∈ ℝ
36 negpilt0 45279 . . . . . . . . . . . . . . . . 17 -π < 0
37 pipos 26368 . . . . . . . . . . . . . . . . 17 0 < π
38 pire 26366 . . . . . . . . . . . . . . . . . . . 20 π ∈ ℝ
3938renegcli 11483 . . . . . . . . . . . . . . . . . . 19 -π ∈ ℝ
4039rexri 11232 . . . . . . . . . . . . . . . . . 18 -π ∈ ℝ*
4138rexri 11232 . . . . . . . . . . . . . . . . . 18 π ∈ ℝ*
42 elioo2 13347 . . . . . . . . . . . . . . . . . 18 ((-π ∈ ℝ* ∧ π ∈ ℝ*) → (0 ∈ (-π(,)π) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 < π)))
4340, 41, 42mp2an 692 . . . . . . . . . . . . . . . . 17 (0 ∈ (-π(,)π) ↔ (0 ∈ ℝ ∧ -π < 0 ∧ 0 < π))
4435, 36, 37, 43mpbir3an 1342 . . . . . . . . . . . . . . . 16 0 ∈ (-π(,)π)
4544a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ (-π(,)π))
46 eqid 2729 . . . . . . . . . . . . . . 15 ((-π(,)π) ∖ {0}) = ((-π(,)π) ∖ {0})
47 1ex 11170 . . . . . . . . . . . . . . . . . . 19 1 ∈ V
48 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)
4947, 48dmmpti 6662 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = ((-π(,)π) ∖ {0})
50 reelprrecn 11160 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ∈ {ℝ, ℂ}
5150a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ℝ ∈ {ℝ, ℂ})
5212sseli 3942 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
5352adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
54 1red 11175 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
5551dvmptid 25861 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
56 tgioo4 24693 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
57 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
58 sncldre 45038 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ∈ ℝ → {0} ∈ (Clsd‘(topGen‘ran (,))))
5935, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 {0} ∈ (Clsd‘(topGen‘ran (,)))
60 retopon 24651 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
6160toponunii 22803 . . . . . . . . . . . . . . . . . . . . . . . . 25 ℝ = (topGen‘ran (,))
6261difopn 22921 . . . . . . . . . . . . . . . . . . . . . . . 24 (((-π(,)π) ∈ (topGen‘ran (,)) ∧ {0} ∈ (Clsd‘(topGen‘ran (,)))) → ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,)))
6333, 59, 62mp2an 692 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,))
6463a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ((-π(,)π) ∖ {0}) ∈ (topGen‘ran (,)))
6551, 53, 54, 55, 20, 56, 57, 64dvmptres 25867 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1))
6665mptru 1547 . . . . . . . . . . . . . . . . . . . 20 (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)
6766eqcomi 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
6867dmeqi 5868 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
6949, 68eqtr3i 2754 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
7069eqimssi 4007 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
7170a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)))
72 fvex 6871 . . . . . . . . . . . . . . . . . . 19 (cos‘(𝑥 / 2)) ∈ V
73 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))
7472, 73dmmpti 6662 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = ((-π(,)π) ∖ {0})
75 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
7653halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑥 ∈ ℝ) → (𝑥 / 2) ∈ ℂ)
7776sincld 16098 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘(𝑥 / 2)) ∈ ℂ)
7875, 77mulcld 11194 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → (2 · (sin‘(𝑥 / 2))) ∈ ℂ)
7976coscld 16099 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘(𝑥 / 2)) ∈ ℂ)
80 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → 2 ∈ ℂ)
81 2ne0 12290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ≠ 0
8281a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → 2 ≠ 0)
8352, 80, 82divrec2d 11962 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → (𝑥 / 2) = ((1 / 2) · 𝑥))
8483fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℝ → (sin‘(𝑥 / 2)) = (sin‘((1 / 2) · 𝑥)))
8584oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘((1 / 2) · 𝑥))))
8685mpteq2ia 5202 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
8786oveq2i 7398 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
88 resmpt 6008 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
8912, 88ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
9089eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) = ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)
9190oveq2i 7398 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ))
92 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))
93 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℂ → 2 ∈ ℂ)
94 halfcn 12396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1 / 2) ∈ ℂ
9594a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ → (1 / 2) ∈ ℂ)
96 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
9795, 96mulcld 11194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℂ → ((1 / 2) · 𝑥) ∈ ℂ)
9897sincld 16098 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℂ → (sin‘((1 / 2) · 𝑥)) ∈ ℂ)
9993, 98mulcld 11194 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℂ → (2 · (sin‘((1 / 2) · 𝑥))) ∈ ℂ)
10092, 99fmpti 7084 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))):ℂ⟶ℂ
101 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
102 2cn 12261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2 ∈ ℂ
103102, 94mulcli 11181 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (2 · (1 / 2)) ∈ ℂ
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ℂ → (2 · (1 / 2)) ∈ ℂ)
10597coscld 16099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑥 ∈ ℂ → (cos‘((1 / 2) · 𝑥)) ∈ ℂ)
106104, 105mulcld 11194 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℂ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) ∈ ℂ)
107106adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((⊤ ∧ 𝑥 ∈ ℂ) → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) ∈ ℂ)
108101, 107dmmptd 6663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⊤ → dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = ℂ)
109108mptru 1547 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = ℂ
11012, 109sseqtrri 3996 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℝ ⊆ dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
111 dvasinbx 45918 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℂ ∧ (1 / 2) ∈ ℂ) → (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))))
112102, 94, 111mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
113112dmeqi 5868 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = dom (𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
114110, 113sseqtrri 3996 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℝ ⊆ dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))
115 dvcnre 45914 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))):ℂ⟶ℂ ∧ ℝ ⊆ dom (ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))))) → (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)) = ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ))
116100, 114, 115mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (ℝ D ((𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥)))) ↾ ℝ)) = ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ)
117112reseq1i 5946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ) = ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ)
118 resmpt 6008 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))))
11912, 118ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℂ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))))
120102, 81recidi 11913 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2 · (1 / 2)) = 1
121120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (2 · (1 / 2)) = 1)
12283eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℝ → ((1 / 2) · 𝑥) = (𝑥 / 2))
123122fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (cos‘((1 / 2) · 𝑥)) = (cos‘(𝑥 / 2)))
124121, 123oveq12d 7405 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) = (1 · (cos‘(𝑥 / 2))))
12552halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ ℝ → (𝑥 / 2) ∈ ℂ)
126125coscld 16099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ ℝ → (cos‘(𝑥 / 2)) ∈ ℂ)
127126mullidd 11192 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ ℝ → (1 · (cos‘(𝑥 / 2))) = (cos‘(𝑥 / 2)))
128124, 127eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ ℝ → ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥))) = (cos‘(𝑥 / 2)))
129128mpteq2ia 5202 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ ℝ ↦ ((2 · (1 / 2)) · (cos‘((1 / 2) · 𝑥)))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
130117, 119, 1293eqtri 2756 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((ℂ D (𝑥 ∈ ℂ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
13191, 116, 1303eqtri 2756 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘((1 / 2) · 𝑥))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
13287, 131eqtri 2752 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2)))
133132a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ℝ ↦ (cos‘(𝑥 / 2))))
13451, 78, 79, 133, 20, 56, 57, 64dvmptres 25867 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
135134mptru 1547 . . . . . . . . . . . . . . . . . . . 20 (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))
136135eqcomi 2738 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
137136dmeqi 5868 . . . . . . . . . . . . . . . . . 18 dom (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
13874, 137eqtr3i 2754 . . . . . . . . . . . . . . . . 17 ((-π(,)π) ∖ {0}) = dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
139138eqimssi 4007 . . . . . . . . . . . . . . . 16 ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
140139a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ((-π(,)π) ∖ {0}) ⊆ dom (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))))
14117recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ ℂ)
142141ssriv 3950 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)π) ⊆ ℂ
143142a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (-π(,)π) ⊆ ℂ)
144 ssid 3969 . . . . . . . . . . . . . . . . . . . . . . 23 ℂ ⊆ ℂ
145144a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → ℂ ⊆ ℂ)
146143, 145idcncfg 45871 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ))
147146mptru 1547 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ)
148 cnlimc 25789 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ⊆ ℂ → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦))))
149142, 148ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦)))
150147, 149mpbi 230 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦))
151150simpri 485 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦)
152 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) = ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0))
153 oveq2 7395 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) = ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0))
154152, 153eleq12d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) ↔ ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0)))
155154rspccva 3587 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 𝑦) ∧ 0 ∈ (-π(,)π)) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0))
156151, 44, 155mp2an 692 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0)
157 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → 𝑥 = 0)
158 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (-π(,)π) ↦ 𝑥) = (𝑥 ∈ (-π(,)π) ↦ 𝑥)
159 c0ex 11168 . . . . . . . . . . . . . . . . . . 19 0 ∈ V
160157, 158, 159fvmpt 6968 . . . . . . . . . . . . . . . . . 18 (0 ∈ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) = 0)
16144, 160ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥)‘0) = 0
162 elioore 13336 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℝ)
163162recnd 11202 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-π(,)π) → 𝑥 ∈ ℂ)
164158, 163fmpti 7084 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ
165164a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 𝑥):(-π(,)π)⟶ℂ)
166165limcdif 25777 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0))
167166mptru 1547 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0)
168 resmpt 6008 . . . . . . . . . . . . . . . . . . . 20 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
16916, 168ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)
170169oveq1i 7397 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (-π(,)π) ↦ 𝑥) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
171167, 170eqtri 2752 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ 𝑥) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
172156, 161, 1713eltr3i 2840 . . . . . . . . . . . . . . . 16 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0)
173172a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) lim 0))
174 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ ℂ ↦ 2) = (𝑥 ∈ ℂ ↦ 2)
175144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℂ → ℂ ⊆ ℂ)
176 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ ℂ → 2 ∈ ℂ)
177175, 176, 175constcncfg 45870 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ → (𝑥 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
178102, 177mp1i 13 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑥 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
179 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . . 23 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → 2 ∈ ℂ)
180174, 178, 143, 145, 179cncfmptssg 45869 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑥 ∈ (-π(,)π) ↦ 2) ∈ ((-π(,)π)–cn→ℂ))
181 sincn 26354 . . . . . . . . . . . . . . . . . . . . . . . 24 sin ∈ (ℂ–cn→ℂ)
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → sin ∈ (ℂ–cn→ℂ))
183 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) = (𝑥 ∈ ℂ ↦ (𝑥 / 2))
184183divccncf 24799 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ))
185102, 81, 184mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ)
186185a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑥 ∈ ℂ ↦ (𝑥 / 2)) ∈ (ℂ–cn→ℂ))
187163adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → 𝑥 ∈ ℂ)
188187halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((⊤ ∧ 𝑥 ∈ (-π(,)π)) → (𝑥 / 2) ∈ ℂ)
189183, 186, 143, 145, 188cncfmptssg 45869 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (𝑥 / 2)) ∈ ((-π(,)π)–cn→ℂ))
190182, 189cncfmpt1f 24807 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (sin‘(𝑥 / 2))) ∈ ((-π(,)π)–cn→ℂ))
191180, 190mulcncf 25346 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ))
192191mptru 1547 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ)
193 cnlimc 25789 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ⊆ ℂ → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦))))
194142, 193ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ∈ ((-π(,)π)–cn→ℂ) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦)))
195192, 194mpbi 230 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ ∧ ∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦))
196195simpri 485 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦)
197 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0))
198 oveq2 7395 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 0 → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) = ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
199197, 198eleq12d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 0 → (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) ↔ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)))
200199rspccva 3587 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (-π(,)π)((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 𝑦) ∧ 0 ∈ (-π(,)π)) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
201196, 44, 200mp2an 692 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) ∈ ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
202 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (𝑥 / 2) = (0 / 2))
203102, 81div0i 11916 . . . . . . . . . . . . . . . . . . . . . . . 24 (0 / 2) = 0
204202, 203eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑥 / 2) = 0)
205204fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 0 → (sin‘(𝑥 / 2)) = (sin‘0))
206 sin0 16117 . . . . . . . . . . . . . . . . . . . . . 22 (sin‘0) = 0
207205, 206eqtrdi 2780 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 0 → (sin‘(𝑥 / 2)) = 0)
208207oveq2d 7403 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (2 · (sin‘(𝑥 / 2))) = (2 · 0))
209 2t0e0 12350 . . . . . . . . . . . . . . . . . . . 20 (2 · 0) = 0
210208, 209eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (2 · (sin‘(𝑥 / 2))) = 0)
211 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))
212210, 211, 159fvmpt 6968 . . . . . . . . . . . . . . . . . 18 (0 ∈ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) = 0)
21344, 212ax-mp 5 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2))))‘0) = 0
214 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → 2 ∈ ℂ)
215163halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (-π(,)π) → (𝑥 / 2) ∈ ℂ)
216215sincld 16098 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (-π(,)π) → (sin‘(𝑥 / 2)) ∈ ℂ)
217214, 216mulcld 11194 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (-π(,)π) → (2 · (sin‘(𝑥 / 2))) ∈ ℂ)
218211, 217fmpti 7084 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ
219218a1i 11 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))):(-π(,)π)⟶ℂ)
220219limcdif 25777 . . . . . . . . . . . . . . . . . . 19 (⊤ → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0))
221220mptru 1547 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0)
222 resmpt 6008 . . . . . . . . . . . . . . . . . . . 20 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
22316, 222ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))
224223oveq1i 7397 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
225221, 224eqtri 2752 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (-π(,)π) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
226201, 213, 2253eltr3i 2840 . . . . . . . . . . . . . . . 16 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0)
227226a1i 11 . . . . . . . . . . . . . . 15 (⊤ → 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) lim 0))
228 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
229 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑦 → (𝑥 / 2) = (𝑦 / 2))
230229fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (sin‘(𝑥 / 2)) = (sin‘(𝑦 / 2)))
231230oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑦 / 2))))
232231adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑦) → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑦 / 2))))
233 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ((-π(,)π) ∖ {0}))
23426a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
23519sseli 3942 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ℝ)
236235rehalfcld 12429 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ ℝ)
237236resincld 16111 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ∈ ℝ)
238234, 237remulcld 11204 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑦 / 2))) ∈ ℝ)
239228, 232, 233, 238fvmptd 6975 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = (2 · (sin‘(𝑦 / 2))))
240 2cnd 12264 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℂ)
241237recnd 11202 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ∈ ℂ)
24281a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ≠ 0)
243 ioossicc 13394 . . . . . . . . . . . . . . . . . . . . . . 23 (-π(,)π) ⊆ (-π[,]π)
244 eldifi 4094 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ (-π(,)π))
245243, 244sselid 3944 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ (-π[,]π))
246 eldifsni 4754 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ≠ 0)
247 fourierdlem44 46149 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (-π[,]π) ∧ 𝑦 ≠ 0) → (sin‘(𝑦 / 2)) ≠ 0)
248245, 246, 247syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑦 / 2)) ≠ 0)
249240, 241, 242, 248mulne0d 11830 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑦 / 2))) ≠ 0)
250239, 249eqnetrd 2992 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) ≠ 0)
251250neneqd 2930 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ¬ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0)
252251nrex 3057 . . . . . . . . . . . . . . . . 17 ¬ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0
25325fnmpt 6658 . . . . . . . . . . . . . . . . . . 19 (∀𝑥 ∈ ((-π(,)π) ∖ {0})(2 · (sin‘(𝑥 / 2))) ∈ ℝ → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0}))
254253, 30mprg 3050 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0})
255 ssid 3969 . . . . . . . . . . . . . . . . . 18 ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})
256 fvelimab 6933 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) Fn ((-π(,)π) ∖ {0}) ∧ ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})) → (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0))
257254, 255, 256mp2an 692 . . . . . . . . . . . . . . . . 17 (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑦) = 0)
258252, 257mtbir 323 . . . . . . . . . . . . . . . 16 ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0}))
259258a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) “ ((-π(,)π) ∖ {0})))
260 eqidd 2730 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
261229fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑦 → (cos‘(𝑥 / 2)) = (cos‘(𝑦 / 2)))
262261adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑦) → (cos‘(𝑥 / 2)) = (cos‘(𝑦 / 2)))
263235recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 ∈ ℂ)
264263halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ ℂ)
265264coscld 16099 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑦 / 2)) ∈ ℂ)
266260, 262, 233, 265fvmptd 6975 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = (cos‘(𝑦 / 2)))
267236rered 15190 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑦 / 2)) = (𝑦 / 2))
268 halfpire 26373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (π / 2) ∈ ℝ
269268renegcli 11483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 -(π / 2) ∈ ℝ
270269a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ)
271270rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ*)
272268a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ)
273272rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ*)
274 picn 26367 . . . . . . . . . . . . . . . . . . . . . . . . . 26 π ∈ ℂ
275 divneg 11874 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
276274, 102, 81, 275mp3an 1463 . . . . . . . . . . . . . . . . . . . . . . . . 25 -(π / 2) = (-π / 2)
27739a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ)
278 2rp 12956 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ+
279278a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ+)
28040a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ*)
28141a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ*)
282 ioogtlb 45493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑦 ∈ (-π(,)π)) → -π < 𝑦)
283280, 281, 244, 282syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -π < 𝑦)
284277, 235, 279, 283ltdiv1dd 13052 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (-π / 2) < (𝑦 / 2))
285276, 284eqbrtrid 5142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) < (𝑦 / 2))
28638a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ)
287 iooltub 45508 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑦 ∈ (-π(,)π)) → 𝑦 < π)
288280, 281, 244, 287syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ ((-π(,)π) ∖ {0}) → 𝑦 < π)
289235, 286, 279, 288ltdiv1dd 13052 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) < (π / 2))
290271, 273, 236, 285, 289eliood 45496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (𝑦 / 2) ∈ (-(π / 2)(,)(π / 2)))
291267, 290eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑦 / 2)) ∈ (-(π / 2)(,)(π / 2)))
292 cosne0 26438 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦 / 2) ∈ ℂ ∧ (ℜ‘(𝑦 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝑦 / 2)) ≠ 0)
293264, 291, 292syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑦 / 2)) ≠ 0)
294266, 293eqnetrd 2992 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) ≠ 0)
295294neneqd 2930 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ((-π(,)π) ∖ {0}) → ¬ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0)
296295nrex 3057 . . . . . . . . . . . . . . . . . 18 ¬ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0
29772, 73fnmpti 6661 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) Fn ((-π(,)π) ∖ {0})
298 fvelimab 6933 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) Fn ((-π(,)π) ∖ {0}) ∧ ((-π(,)π) ∖ {0}) ⊆ ((-π(,)π) ∖ {0})) → (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0))
299297, 255, 298mp2an 692 . . . . . . . . . . . . . . . . . 18 (0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})) ↔ ∃𝑦 ∈ ((-π(,)π) ∖ {0})((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2)))‘𝑦) = 0)
300296, 299mtbir 323 . . . . . . . . . . . . . . . . 17 ¬ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0}))
301135imaeq1i 6028 . . . . . . . . . . . . . . . . . 18 ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0}))
302301eleq2i 2820 . . . . . . . . . . . . . . . . 17 (0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})) ↔ 0 ∈ ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))) “ ((-π(,)π) ∖ {0})))
303300, 302mtbir 323 . . . . . . . . . . . . . . . 16 ¬ 0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0}))
304303a1i 11 . . . . . . . . . . . . . . 15 (⊤ → ¬ 0 ∈ ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) “ ((-π(,)π) ∖ {0})))
305 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2)))
306 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2))))
30719sseli 3942 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ℝ)
308307recnd 11202 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ℂ)
309308halfcld 12427 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ ℂ)
310309coscld 16099 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ ℂ)
311307rehalfcld 12429 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ ℝ)
312311rered 15190 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑠 / 2)) = (𝑠 / 2))
313269a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ)
314313rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) ∈ ℝ*)
315268a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ)
316315rexrd 11224 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (π / 2) ∈ ℝ*)
31738a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ)
318317renegcld 11605 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ)
319278a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ+)
32040a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π ∈ ℝ*)
32141a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → π ∈ ℝ*)
322 eldifi 4094 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ (-π(,)π))
323 ioogtlb 45493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π(,)π)) → -π < 𝑠)
324320, 321, 322, 323syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -π < 𝑠)
325318, 307, 319, 324ltdiv1dd 13052 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (-π / 2) < (𝑠 / 2))
326276, 325eqbrtrid 5142 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → -(π / 2) < (𝑠 / 2))
327 iooltub 45508 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝑠 ∈ (-π(,)π)) → 𝑠 < π)
328320, 321, 322, 327syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 < π)
329307, 317, 319, 328ltdiv1dd 13052 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) < (π / 2))
330314, 316, 311, 326, 329eliood 45496 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑠 / 2) ∈ (-(π / 2)(,)(π / 2)))
331312, 330eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℜ‘(𝑠 / 2)) ∈ (-(π / 2)(,)(π / 2)))
332 cosne0 26438 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑠 / 2) ∈ ℂ ∧ (ℜ‘(𝑠 / 2)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(𝑠 / 2)) ≠ 0)
333309, 331, 332syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ≠ 0)
334333neneqd 2930 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ (cos‘(𝑠 / 2)) = 0)
335311recoscld 16112 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ ℝ)
336 elsng 4603 . . . . . . . . . . . . . . . . . . . . 21 ((cos‘(𝑠 / 2)) ∈ ℝ → ((cos‘(𝑠 / 2)) ∈ {0} ↔ (cos‘(𝑠 / 2)) = 0))
337335, 336syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((cos‘(𝑠 / 2)) ∈ {0} ↔ (cos‘(𝑠 / 2)) = 0))
338334, 337mtbird 325 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ (cos‘(𝑠 / 2)) ∈ {0})
339310, 338eldifd 3925 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
340339adantl 481 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑠 ∈ ((-π(,)π) ∖ {0})) → (cos‘(𝑠 / 2)) ∈ (ℂ ∖ {0}))
341309ad2antrl 728 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ (𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ (𝑠 / 2) ≠ 0)) → (𝑠 / 2) ∈ ℂ)
342 cosf 16093 . . . . . . . . . . . . . . . . . . . 20 cos:ℂ⟶ℂ
343342a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → cos:ℂ⟶ℂ)
344343ffvelcdmda 7056 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
345 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ℂ ↦ (𝑠 / 2)) = (𝑠 ∈ ℂ ↦ (𝑠 / 2))
346345divccncf 24799 . . . . . . . . . . . . . . . . . . . . . . 23 ((2 ∈ ℂ ∧ 2 ≠ 0) → (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ))
347102, 81, 346mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ)
348347a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ℂ ↦ (𝑠 / 2)) ∈ (ℂ–cn→ℂ))
349141adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑠 ∈ (-π(,)π)) → 𝑠 ∈ ℂ)
350349halfcld 12427 . . . . . . . . . . . . . . . . . . . . 21 ((⊤ ∧ 𝑠 ∈ (-π(,)π)) → (𝑠 / 2) ∈ ℂ)
351345, 348, 143, 145, 350cncfmptssg 45869 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ∈ ((-π(,)π)–cn→ℂ))
352 oveq1 7394 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 0 → (𝑠 / 2) = (0 / 2))
353352, 203eqtrdi 2780 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → (𝑠 / 2) = 0)
354351, 45, 353cnmptlimc 25791 . . . . . . . . . . . . . . . . . . 19 (⊤ → 0 ∈ ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0))
355 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) = (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2))
356141halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ (-π(,)π) → (𝑠 / 2) ∈ ℂ)
357355, 356fmpti 7084 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)):(-π(,)π)⟶ℂ
358357a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)):(-π(,)π)⟶ℂ)
359358limcdif 25777 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0))
360359mptru 1547 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0)
361 resmpt 6008 . . . . . . . . . . . . . . . . . . . . . 22 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)))
36216, 361ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2))
363362oveq1i 7397 . . . . . . . . . . . . . . . . . . . 20 (((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0)
364360, 363eqtri 2752 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ↦ (𝑠 / 2)) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0)
365354, 364eleqtrdi 2838 . . . . . . . . . . . . . . . . . 18 (⊤ → 0 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / 2)) lim 0))
366 ffn 6688 . . . . . . . . . . . . . . . . . . . . . . 23 (cos:ℂ⟶ℂ → cos Fn ℂ)
367342, 366ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 cos Fn ℂ
368 dffn5 6919 . . . . . . . . . . . . . . . . . . . . . 22 (cos Fn ℂ ↔ cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
369367, 368mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))
370 coscn 26355 . . . . . . . . . . . . . . . . . . . . 21 cos ∈ (ℂ–cn→ℂ)
371369, 370eqeltrri 2825 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ)
372371a1i 11 . . . . . . . . . . . . . . . . . . 19 (⊤ → (𝑥 ∈ ℂ ↦ (cos‘𝑥)) ∈ (ℂ–cn→ℂ))
373 0cnd 11167 . . . . . . . . . . . . . . . . . . 19 (⊤ → 0 ∈ ℂ)
374 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 0 → (cos‘𝑥) = (cos‘0))
375 cos0 16118 . . . . . . . . . . . . . . . . . . . 20 (cos‘0) = 1
376374, 375eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (cos‘𝑥) = 1)
377372, 373, 376cnmptlimc 25791 . . . . . . . . . . . . . . . . . 18 (⊤ → 1 ∈ ((𝑥 ∈ ℂ ↦ (cos‘𝑥)) lim 0))
378 fveq2 6858 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑠 / 2) → (cos‘𝑥) = (cos‘(𝑠 / 2)))
379 fveq2 6858 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 / 2) = 0 → (cos‘(𝑠 / 2)) = (cos‘0))
380379, 375eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 ((𝑠 / 2) = 0 → (cos‘(𝑠 / 2)) = 1)
381380ad2antll 729 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ (𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ (𝑠 / 2) = 0)) → (cos‘(𝑠 / 2)) = 1)
382341, 344, 365, 377, 378, 381limcco 25794 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑠 / 2))) lim 0))
383 ax-1ne0 11137 . . . . . . . . . . . . . . . . . 18 1 ≠ 0
384383a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 1 ≠ 0)
385305, 306, 340, 382, 384reclimc 45651 . . . . . . . . . . . . . . . 16 (⊤ → (1 / 1) ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) lim 0))
386 1div1e1 11873 . . . . . . . . . . . . . . . 16 (1 / 1) = 1
38766fveq1i 6859 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) = ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)‘𝑠)
388 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1))
389 eqidd 2730 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → 1 = 1)
390 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 𝑠 ∈ ((-π(,)π) ∖ {0}))
391 1red 11175 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 1 ∈ ℝ)
392388, 389, 390, 391fvmptd 6975 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 1)‘𝑠) = 1)
393387, 392eqtr2id 2777 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 1 = ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠))
394135a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (cos‘(𝑥 / 2))))
395 oveq1 7394 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑠 → (𝑥 / 2) = (𝑠 / 2))
396395fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑠 → (cos‘(𝑥 / 2)) = (cos‘(𝑠 / 2)))
397396adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (cos‘(𝑥 / 2)) = (cos‘(𝑠 / 2)))
398394, 397, 390, 335fvmptd 6975 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠) = (cos‘(𝑠 / 2)))
399398eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (cos‘(𝑠 / 2)) = ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))
400393, 399oveq12d 7405 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (1 / (cos‘(𝑠 / 2))) = (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠)))
401400mpteq2ia 5202 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠)))
402401oveq1i 7397 . . . . . . . . . . . . . . . 16 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (1 / (cos‘(𝑠 / 2)))) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))) lim 0)
403385, 386, 4023eltr3g 2844 . . . . . . . . . . . . . . 15 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))‘𝑠) / ((ℝ D (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))‘𝑠))) lim 0))
40420, 24, 32, 34, 45, 46, 71, 140, 173, 227, 259, 304, 403lhop 25921 . . . . . . . . . . . . . 14 (⊤ → 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0))
405404mptru 1547 . . . . . . . . . . . . 13 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0)
406 eqidd 2730 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥))
407 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → 𝑥 = 𝑠)
408406, 407, 390, 307fvmptd 6975 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) = 𝑠)
409 eqidd 2730 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))) = (𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2)))))
410407oveq1d 7402 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (𝑥 / 2) = (𝑠 / 2))
411410fveq2d 6862 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (sin‘(𝑥 / 2)) = (sin‘(𝑠 / 2)))
412411oveq2d 7403 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ∧ 𝑥 = 𝑠) → (2 · (sin‘(𝑥 / 2))) = (2 · (sin‘(𝑠 / 2))))
41326a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → 2 ∈ ℝ)
414311resincld 16111 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (sin‘(𝑠 / 2)) ∈ ℝ)
415413, 414remulcld 11204 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ ℝ)
416409, 412, 390, 415fvmptd 6975 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠) = (2 · (sin‘(𝑠 / 2))))
417408, 416oveq12d 7405 . . . . . . . . . . . . . . 15 (𝑠 ∈ ((-π(,)π) ∖ {0}) → (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠)) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
418417mpteq2ia 5202 . . . . . . . . . . . . . 14 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
419418oveq1i 7397 . . . . . . . . . . . . 13 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ 𝑥)‘𝑠) / ((𝑥 ∈ ((-π(,)π) ∖ {0}) ↦ (2 · (sin‘(𝑥 / 2))))‘𝑠))) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
420405, 419eleqtri 2826 . . . . . . . . . . . 12 1 ∈ ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
42110oveq1i 7397 . . . . . . . . . . . . . 14 (𝐾 lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
42210feq1i 6679 . . . . . . . . . . . . . . . . . . 19 (𝐾:(-π[,]π)⟶ℂ ↔ (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ)
42314, 422mpbi 230 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ
424423a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π[,]π)⟶ℂ)
425243a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → (-π(,)π) ⊆ (-π[,]π))
426 iccssre 13390 . . . . . . . . . . . . . . . . . . . 20 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
42739, 38, 426mp2an 692 . . . . . . . . . . . . . . . . . . 19 (-π[,]π) ⊆ ℝ
428427a1i 11 . . . . . . . . . . . . . . . . . 18 (⊤ → (-π[,]π) ⊆ ℝ)
429428, 12sstrdi 3959 . . . . . . . . . . . . . . . . 17 (⊤ → (-π[,]π) ⊆ ℂ)
430 eqid 2729 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0}))
43139, 35, 36ltleii 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 -π ≤ 0
43235, 38, 37ltleii 11297 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ π
43339, 38elicc2i 13373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (0 ∈ (-π[,]π) ↔ (0 ∈ ℝ ∧ -π ≤ 0 ∧ 0 ≤ π))
43435, 431, 432, 433mpbir3an 1342 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ∈ (-π[,]π)
435159snss 4749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ (-π[,]π) ↔ {0} ⊆ (-π[,]π))
436434, 435mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . . 25 {0} ⊆ (-π[,]π)
437 ssequn2 4152 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({0} ⊆ (-π[,]π) ↔ ((-π[,]π) ∪ {0}) = (-π[,]π))
438436, 437mpbi 230 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-π[,]π) ∪ {0}) = (-π[,]π)
439438oveq2i 7398 . . . . . . . . . . . . . . . . . . . . . . 23 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
440 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (topGen‘ran (,)) = (topGen‘ran (,))
44157, 440rerest 24692 . . . . . . . . . . . . . . . . . . . . . . . 24 ((-π[,]π) ⊆ ℝ → ((TopOpen‘ℂfld) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π)))
442427, 441ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ((TopOpen‘ℂfld) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π))
443439, 442eqtri 2752 . . . . . . . . . . . . . . . . . . . . . 22 ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})) = ((topGen‘ran (,)) ↾t (-π[,]π))
444443fveq2i 6861 . . . . . . . . . . . . . . . . . . . . 21 (int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0}))) = (int‘((topGen‘ran (,)) ↾t (-π[,]π)))
445159snss 4749 . . . . . . . . . . . . . . . . . . . . . . 23 (0 ∈ (-π(,)π) ↔ {0} ⊆ (-π(,)π))
44644, 445mpbi 230 . . . . . . . . . . . . . . . . . . . . . 22 {0} ⊆ (-π(,)π)
447 ssequn2 4152 . . . . . . . . . . . . . . . . . . . . . 22 ({0} ⊆ (-π(,)π) ↔ ((-π(,)π) ∪ {0}) = (-π(,)π))
448446, 447mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 ((-π(,)π) ∪ {0}) = (-π(,)π)
449444, 448fveq12i 6864 . . . . . . . . . . . . . . . . . . . 20 ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0})) = ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π))
450 resttopon 23048 . . . . . . . . . . . . . . . . . . . . . . 23 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ (-π[,]π) ⊆ ℝ) → ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π)))
45160, 427, 450mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π))
452451topontopi 22802 . . . . . . . . . . . . . . . . . . . . 21 ((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top
453 retop 24649 . . . . . . . . . . . . . . . . . . . . . . . 24 (topGen‘ran (,)) ∈ Top
454 ovex 7420 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π[,]π) ∈ V
455453, 454pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . 23 ((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ∈ V)
456 ssid 3969 . . . . . . . . . . . . . . . . . . . . . . . 24 (-π(,)π) ⊆ (-π(,)π)
45733, 243, 4563pm3.2i 1340 . . . . . . . . . . . . . . . . . . . . . . 23 ((-π(,)π) ∈ (topGen‘ran (,)) ∧ (-π(,)π) ⊆ (-π[,]π) ∧ (-π(,)π) ⊆ (-π(,)π))
458 restopnb 23062 . . . . . . . . . . . . . . . . . . . . . . 23 ((((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ∈ V) ∧ ((-π(,)π) ∈ (topGen‘ran (,)) ∧ (-π(,)π) ⊆ (-π[,]π) ∧ (-π(,)π) ⊆ (-π(,)π))) → ((-π(,)π) ∈ (topGen‘ran (,)) ↔ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))))
459455, 457, 458mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 ((-π(,)π) ∈ (topGen‘ran (,)) ↔ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π)))
46033, 459mpbi 230 . . . . . . . . . . . . . . . . . . . . 21 (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))
461 isopn3i 22969 . . . . . . . . . . . . . . . . . . . . 21 ((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ (-π(,)π) ∈ ((topGen‘ran (,)) ↾t (-π[,]π))) → ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π)) = (-π(,)π))
462452, 460, 461mp2an 692 . . . . . . . . . . . . . . . . . . . 20 ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘(-π(,)π)) = (-π(,)π)
463 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (-π(,)π) = (-π(,)π)
464449, 462, 4633eqtrri 2757 . . . . . . . . . . . . . . . . . . 19 (-π(,)π) = ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0}))
46544, 464eleqtri 2826 . . . . . . . . . . . . . . . . . 18 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0}))
466465a1i 11 . . . . . . . . . . . . . . . . 17 (⊤ → 0 ∈ ((int‘((TopOpen‘ℂfld) ↾t ((-π[,]π) ∪ {0})))‘((-π(,)π) ∪ {0})))
467424, 425, 429, 57, 430, 466limcres 25787 . . . . . . . . . . . . . . . 16 (⊤ → (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0))
468467mptru 1547 . . . . . . . . . . . . . . 15 (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
469468eqcomi 2738 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0)
470 resmpt 6008 . . . . . . . . . . . . . . . 16 ((-π(,)π) ⊆ (-π[,]π) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
471243, 470ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
472471oveq1i 7397 . . . . . . . . . . . . . 14 (((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ (-π(,)π)) lim 0) = ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
473421, 469, 4723eqtri 2756 . . . . . . . . . . . . 13 (𝐾 lim 0) = ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0)
474 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
475 iftrue 4494 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = 1)
476 1cnd 11169 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 0 → 1 ∈ ℂ)
477475, 476eqeltrd 2828 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
478477adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π(,)π) ∧ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
479 iffalse 4497 . . . . . . . . . . . . . . . . . . . 20 𝑠 = 0 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
480479adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
481141adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ℂ)
482 2cnd 12264 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 2 ∈ ℂ)
483481halfcld 12427 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (𝑠 / 2) ∈ ℂ)
484483sincld 16098 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ∈ ℂ)
485482, 484mulcld 11194 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
48681a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → 2 ≠ 0)
487243sseli 3942 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ (-π(,)π) → 𝑠 ∈ (-π[,]π))
488 neqne 2933 . . . . . . . . . . . . . . . . . . . . . 22 𝑠 = 0 → 𝑠 ≠ 0)
489 fourierdlem44 46149 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
490487, 488, 489syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (sin‘(𝑠 / 2)) ≠ 0)
491482, 484, 486, 490mulne0d 11830 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
492481, 485, 491divcld 11958 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → (𝑠 / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
493480, 492eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (-π(,)π) ∧ ¬ 𝑠 = 0) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
494478, 493pm2.61dan 812 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ (-π(,)π) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ℂ)
495474, 494fmpti 7084 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π(,)π)⟶ℂ
496495a1i 11 . . . . . . . . . . . . . . 15 (⊤ → (𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))):(-π(,)π)⟶ℂ)
497496limcdif 25777 . . . . . . . . . . . . . 14 (⊤ → ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0))
498497mptru 1547 . . . . . . . . . . . . 13 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) lim 0) = (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0)
499 resmpt 6008 . . . . . . . . . . . . . . . 16 (((-π(,)π) ∖ {0}) ⊆ (-π(,)π) → ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
50016, 499ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
501 eldifn 4095 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ 𝑠 ∈ {0})
502 velsn 4605 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ {0} ↔ 𝑠 = 0)
503501, 502sylnib 328 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π(,)π) ∖ {0}) → ¬ 𝑠 = 0)
504503, 479syl 17 . . . . . . . . . . . . . . . 16 (𝑠 ∈ ((-π(,)π) ∖ {0}) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
505504mpteq2ia 5202 . . . . . . . . . . . . . . 15 (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
506500, 505eqtri 2752 . . . . . . . . . . . . . 14 ((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) = (𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
507506oveq1i 7397 . . . . . . . . . . . . 13 (((𝑠 ∈ (-π(,)π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π(,)π) ∖ {0})) lim 0) = ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0)
508473, 498, 5073eqtrri 2757 . . . . . . . . . . . 12 ((𝑠 ∈ ((-π(,)π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) lim 0) = (𝐾 lim 0)
509420, 508eleqtri 2826 . . . . . . . . . . 11 1 ∈ (𝐾 lim 0)
510509a1i 11 . . . . . . . . . 10 (𝑠 = 0 → 1 ∈ (𝐾 lim 0))
511 fveq2 6858 . . . . . . . . . . 11 (𝑠 = 0 → (𝐾𝑠) = (𝐾‘0))
512475, 10, 47fvmpt 6968 . . . . . . . . . . . 12 (0 ∈ (-π[,]π) → (𝐾‘0) = 1)
513434, 512ax-mp 5 . . . . . . . . . . 11 (𝐾‘0) = 1
514511, 513eqtrdi 2780 . . . . . . . . . 10 (𝑠 = 0 → (𝐾𝑠) = 1)
515 oveq2 7395 . . . . . . . . . 10 (𝑠 = 0 → (𝐾 lim 𝑠) = (𝐾 lim 0))
516510, 514, 5153eltr4d 2843 . . . . . . . . 9 (𝑠 = 0 → (𝐾𝑠) ∈ (𝐾 lim 𝑠))
517427, 12sstri 3956 . . . . . . . . . . 11 (-π[,]π) ⊆ ℂ
518517a1i 11 . . . . . . . . . 10 (𝑠 = 0 → (-π[,]π) ⊆ ℂ)
51938a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → π ∈ ℝ)
520519renegcld 11605 . . . . . . . . . . 11 (𝑠 = 0 → -π ∈ ℝ)
521 id 22 . . . . . . . . . . . 12 (𝑠 = 0 → 𝑠 = 0)
52235a1i 11 . . . . . . . . . . . 12 (𝑠 = 0 → 0 ∈ ℝ)
523521, 522eqeltrd 2828 . . . . . . . . . . 11 (𝑠 = 0 → 𝑠 ∈ ℝ)
524431, 521breqtrrid 5145 . . . . . . . . . . 11 (𝑠 = 0 → -π ≤ 𝑠)
525521, 432eqbrtrdi 5146 . . . . . . . . . . 11 (𝑠 = 0 → 𝑠 ≤ π)
526520, 519, 523, 524, 525eliccd 45502 . . . . . . . . . 10 (𝑠 = 0 → 𝑠 ∈ (-π[,]π))
52756oveq1i 7397 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (-π[,]π)) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π))
52857cnfldtop 24671 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ Top
529 reex 11159 . . . . . . . . . . . . 13 ℝ ∈ V
530 restabs 23052 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ (-π[,]π) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π)))
531528, 427, 529, 530mp3an 1463 . . . . . . . . . . . 12 (((TopOpen‘ℂfld) ↾t ℝ) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
532527, 531eqtri 2752 . . . . . . . . . . 11 ((topGen‘ran (,)) ↾t (-π[,]π)) = ((TopOpen‘ℂfld) ↾t (-π[,]π))
53357, 532cnplimc 25788 . . . . . . . . . 10 (((-π[,]π) ⊆ ℂ ∧ 𝑠 ∈ (-π[,]π)) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ (𝐾𝑠) ∈ (𝐾 lim 𝑠))))
534518, 526, 533syl2anc 584 . . . . . . . . 9 (𝑠 = 0 → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ (𝐾𝑠) ∈ (𝐾 lim 𝑠))))
53515, 516, 534mpbir2and 713 . . . . . . . 8 (𝑠 = 0 → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
536535adantl 481 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 = 0) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
537 simpl 482 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (-π[,]π))
538502notbii 320 . . . . . . . . . . . . 13 𝑠 ∈ {0} ↔ ¬ 𝑠 = 0)
539538biimpri 228 . . . . . . . . . . . 12 𝑠 = 0 → ¬ 𝑠 ∈ {0})
540539adantl 481 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → ¬ 𝑠 ∈ {0})
541537, 540eldifd 3925 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
542 fveq2 6858 . . . . . . . . . . . 12 (𝑥 = 𝑠 → ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥) = ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
543542eleq2d 2814 . . . . . . . . . . 11 (𝑥 = 𝑠 → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
544429ssdifssd 4110 . . . . . . . . . . . . . . . . 17 (⊤ → ((-π[,]π) ∖ {0}) ⊆ ℂ)
545544, 145idcncfg 45871 . . . . . . . . . . . . . . . 16 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ 𝑠) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
546 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2))))
547 2cnd 12264 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 2 ∈ ℂ)
548 eldifi 4094 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ (-π[,]π))
549517, 548sselid 3944 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ ℂ)
550549halfcld 12427 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 / 2) ∈ ℂ)
551550sincld 16098 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (sin‘(𝑠 / 2)) ∈ ℂ)
552547, 551mulcld 11194 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
55381a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 2 ≠ 0)
554 eldifsni 4754 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ≠ 0)
555548, 554, 489syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (sin‘(𝑠 / 2)) ≠ 0)
556547, 551, 553, 555mulne0d 11830 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
557556neneqd 2930 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ (2 · (sin‘(𝑠 / 2))) = 0)
558 elsng 4603 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · (sin‘(𝑠 / 2))) ∈ ℂ → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
559552, 558syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ((2 · (sin‘(𝑠 / 2))) ∈ {0} ↔ (2 · (sin‘(𝑠 / 2))) = 0))
560557, 559mtbird 325 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ (2 · (sin‘(𝑠 / 2))) ∈ {0})
561552, 560eldifd 3925 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (2 · (sin‘(𝑠 / 2))) ∈ (ℂ ∖ {0}))
562546, 561fmpti 7084 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0})
563 difss 4099 . . . . . . . . . . . . . . . . . . 19 (ℂ ∖ {0}) ⊆ ℂ
564 eqid 2729 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ℂ ↦ 2) = (𝑠 ∈ ℂ ↦ 2)
565175, 176, 175constcncfg 45870 . . . . . . . . . . . . . . . . . . . . . . 23 (2 ∈ ℂ → (𝑠 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
566102, 565mp1i 13 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ ℂ ↦ 2) ∈ (ℂ–cn→ℂ))
567 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . 22 ((⊤ ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → 2 ∈ ℂ)
568564, 566, 544, 145, 567cncfmptssg 45869 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ 2) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
569549, 547, 553divrecd 11961 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 / 2) = (𝑠 · (1 / 2)))
570569mpteq2ia 5202 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / 2)) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 · (1 / 2)))
571 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 ∈ ℂ ↦ (1 / 2)) = (𝑠 ∈ ℂ ↦ (1 / 2))
572144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 / 2) ∈ ℂ → ℂ ⊆ ℂ)
573 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((1 / 2) ∈ ℂ → (1 / 2) ∈ ℂ)
574572, 573, 572constcncfg 45870 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 / 2) ∈ ℂ → (𝑠 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
57594, 574mp1i 13 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⊤ → (𝑠 ∈ ℂ ↦ (1 / 2)) ∈ (ℂ–cn→ℂ))
57694a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⊤ ∧ 𝑠 ∈ ((-π[,]π) ∖ {0})) → (1 / 2) ∈ ℂ)
577571, 575, 544, 145, 576cncfmptssg 45869 . . . . . . . . . . . . . . . . . . . . . . . 24 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (1 / 2)) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
578545, 577mulcncf 25346 . . . . . . . . . . . . . . . . . . . . . . 23 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 · (1 / 2))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
579570, 578eqeltrid 2832 . . . . . . . . . . . . . . . . . . . . . 22 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / 2)) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
580182, 579cncfmpt1f 24807 . . . . . . . . . . . . . . . . . . . . 21 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (sin‘(𝑠 / 2))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
581568, 580mulcncf 25346 . . . . . . . . . . . . . . . . . . . 20 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
582581mptru 1547 . . . . . . . . . . . . . . . . . . 19 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)
583 cncfcdm 24791 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∖ {0}) ⊆ ℂ ∧ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)) → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0})))
584563, 582, 583mp2an 692 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})) ↔ (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))):((-π[,]π) ∖ {0})⟶(ℂ ∖ {0}))
585562, 584mpbir 231 . . . . . . . . . . . . . . . . 17 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0}))
586585a1i 11 . . . . . . . . . . . . . . . 16 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (2 · (sin‘(𝑠 / 2)))) ∈ (((-π[,]π) ∖ {0})–cn→(ℂ ∖ {0})))
587545, 586divcncf 25348 . . . . . . . . . . . . . . 15 (⊤ → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ))
588587mptru 1547 . . . . . . . . . . . . . 14 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((-π[,]π) ∖ {0})–cn→ℂ)
589428ssdifssd 4110 . . . . . . . . . . . . . . . . 17 (⊤ → ((-π[,]π) ∖ {0}) ⊆ ℝ)
590589mptru 1547 . . . . . . . . . . . . . . . 16 ((-π[,]π) ∖ {0}) ⊆ ℝ
591590, 12sstri 3956 . . . . . . . . . . . . . . 15 ((-π[,]π) ∖ {0}) ⊆ ℂ
59256oveq1i 7397 . . . . . . . . . . . . . . . . 17 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) = (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0}))
593 restabs 23052 . . . . . . . . . . . . . . . . . 18 (((TopOpen‘ℂfld) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ ℝ ∧ ℝ ∈ V) → (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0})))
594528, 590, 529, 593mp3an 1463 . . . . . . . . . . . . . . . . 17 (((TopOpen‘ℂfld) ↾t ℝ) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0}))
595592, 594eqtri 2752 . . . . . . . . . . . . . . . 16 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) = ((TopOpen‘ℂfld) ↾t ((-π[,]π) ∖ {0}))
596 unicntop 24673 . . . . . . . . . . . . . . . . . . 19 ℂ = (TopOpen‘ℂfld)
597596restid 17396 . . . . . . . . . . . . . . . . . 18 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
598528, 597ax-mp 5 . . . . . . . . . . . . . . . . 17 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
599598eqcomi 2738 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
60057, 595, 599cncfcn 24803 . . . . . . . . . . . . . . 15 ((((-π[,]π) ∖ {0}) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (((-π[,]π) ∖ {0})–cn→ℂ) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)))
601591, 144, 600mp2an 692 . . . . . . . . . . . . . 14 (((-π[,]π) ∖ {0})–cn→ℂ) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld))
602588, 601eleqtri 2826 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld))
603 resttopon 23048 . . . . . . . . . . . . . . 15 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ ((-π[,]π) ∖ {0}) ⊆ ℝ) → ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0})))
60460, 590, 603mp2an 692 . . . . . . . . . . . . . 14 ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0}))
60557cnfldtopon 24670 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
606 cncnp 23167 . . . . . . . . . . . . . 14 ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) ∈ (TopOn‘((-π[,]π) ∖ {0})) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥))))
607604, 605, 606mp2an 692 . . . . . . . . . . . . 13 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) Cn (TopOpen‘ℂfld)) ↔ ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥)))
608602, 607mpbi 230 . . . . . . . . . . . 12 ((𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))):((-π[,]π) ∖ {0})⟶ℂ ∧ ∀𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥))
609608simpri 485 . . . . . . . . . . 11 𝑥 ∈ ((-π[,]π) ∖ {0})(𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑥)
610543, 609vtoclri 3556 . . . . . . . . . 10 (𝑠 ∈ ((-π[,]π) ∖ {0}) → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
611541, 610syl 17 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2))))) ∈ ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
61210reseq1i 5946 . . . . . . . . . 10 (𝐾 ↾ ((-π[,]π) ∖ {0})) = ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0}))
613 difss 4099 . . . . . . . . . . 11 ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)
614 resmpt 6008 . . . . . . . . . . 11 (((-π[,]π) ∖ {0}) ⊆ (-π[,]π) → ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))))
615613, 614ax-mp 5 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
616 eldifn 4095 . . . . . . . . . . . . 13 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ 𝑠 ∈ {0})
617616, 502sylnib 328 . . . . . . . . . . . 12 (𝑠 ∈ ((-π[,]π) ∖ {0}) → ¬ 𝑠 = 0)
618617, 479syl 17 . . . . . . . . . . 11 (𝑠 ∈ ((-π[,]π) ∖ {0}) → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = (𝑠 / (2 · (sin‘(𝑠 / 2)))))
619618mpteq2ia 5202 . . . . . . . . . 10 (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
620612, 615, 6193eqtri 2756 . . . . . . . . 9 (𝐾 ↾ ((-π[,]π) ∖ {0})) = (𝑠 ∈ ((-π[,]π) ∖ {0}) ↦ (𝑠 / (2 · (sin‘(𝑠 / 2)))))
621 restabs 23052 . . . . . . . . . . . 12 (((topGen‘ran (,)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π) ∧ (-π[,]π) ∈ V) → (((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) = ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})))
622453, 613, 454, 621mp3an 1463 . . . . . . . . . . 11 (((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) = ((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0}))
623622oveq1i 7397 . . . . . . . . . 10 ((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld)) = (((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))
624623fveq1i 6859 . . . . . . . . 9 (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠) = ((((topGen‘ran (,)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)
625611, 620, 6243eltr4g 2845 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠))
626452, 613pm3.2i 470 . . . . . . . . . 10 (((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π))
627626a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)))
628 ssdif 4107 . . . . . . . . . . . . . 14 ((-π[,]π) ⊆ ℝ → ((-π[,]π) ∖ {0}) ⊆ (ℝ ∖ {0}))
629427, 628ax-mp 5 . . . . . . . . . . . . 13 ((-π[,]π) ∖ {0}) ⊆ (ℝ ∖ {0})
630629, 541sselid 3944 . . . . . . . . . . . 12 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (ℝ ∖ {0}))
631 sscon 4106 . . . . . . . . . . . . . . . . 17 ({0} ⊆ (-π[,]π) → (ℝ ∖ (-π[,]π)) ⊆ (ℝ ∖ {0}))
632436, 631ax-mp 5 . . . . . . . . . . . . . . . 16 (ℝ ∖ (-π[,]π)) ⊆ (ℝ ∖ {0})
633629, 632unssi 4154 . . . . . . . . . . . . . . 15 (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))) ⊆ (ℝ ∖ {0})
634 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (-π[,]π))
635 eldifn 4095 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (ℝ ∖ {0}) → ¬ 𝑠 ∈ {0})
636635adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → ¬ 𝑠 ∈ {0})
637634, 636eldifd 3925 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ((-π[,]π) ∖ {0}))
638 elun1 4145 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ ((-π[,]π) ∖ {0}) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
639637, 638syl 17 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℝ ∖ {0}) ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
640 eldifi 4094 . . . . . . . . . . . . . . . . . . . 20 (𝑠 ∈ (ℝ ∖ {0}) → 𝑠 ∈ ℝ)
641640adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
642 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → ¬ 𝑠 ∈ (-π[,]π))
643641, 642eldifd 3925 . . . . . . . . . . . . . . . . . 18 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (ℝ ∖ (-π[,]π)))
644 elun2 4146 . . . . . . . . . . . . . . . . . 18 (𝑠 ∈ (ℝ ∖ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
645643, 644syl 17 . . . . . . . . . . . . . . . . 17 ((𝑠 ∈ (ℝ ∖ {0}) ∧ ¬ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
646639, 645pm2.61dan 812 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (ℝ ∖ {0}) → 𝑠 ∈ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))))
647646ssriv 3950 . . . . . . . . . . . . . . 15 (ℝ ∖ {0}) ⊆ (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))
648633, 647eqssi 3963 . . . . . . . . . . . . . 14 (((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π))) = (ℝ ∖ {0})
649648fveq2i 6861 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) = ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0}))
65061cldopn 22918 . . . . . . . . . . . . . . 15 ({0} ∈ (Clsd‘(topGen‘ran (,))) → (ℝ ∖ {0}) ∈ (topGen‘ran (,)))
65159, 650ax-mp 5 . . . . . . . . . . . . . 14 (ℝ ∖ {0}) ∈ (topGen‘ran (,))
652 isopn3i 22969 . . . . . . . . . . . . . 14 (((topGen‘ran (,)) ∈ Top ∧ (ℝ ∖ {0}) ∈ (topGen‘ran (,))) → ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0})) = (ℝ ∖ {0}))
653453, 651, 652mp2an 692 . . . . . . . . . . . . 13 ((int‘(topGen‘ran (,)))‘(ℝ ∖ {0})) = (ℝ ∖ {0})
654649, 653eqtri 2752 . . . . . . . . . . . 12 ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) = (ℝ ∖ {0})
655630, 654eleqtrrdi 2839 . . . . . . . . . . 11 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))))
656655, 537elind 4163 . . . . . . . . . 10 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π)))
657 eqid 2729 . . . . . . . . . . . 12 ((topGen‘ran (,)) ↾t (-π[,]π)) = ((topGen‘ran (,)) ↾t (-π[,]π))
65861, 657restntr 23069 . . . . . . . . . . 11 (((topGen‘ran (,)) ∈ Top ∧ (-π[,]π) ⊆ ℝ ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)) → ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) = (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π)))
659453, 427, 613, 658mp3an 1463 . . . . . . . . . 10 ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) = (((int‘(topGen‘ran (,)))‘(((-π[,]π) ∖ {0}) ∪ (ℝ ∖ (-π[,]π)))) ∩ (-π[,]π))
660656, 659eleqtrrdi 2839 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝑠 ∈ ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})))
66114a1i 11 . . . . . . . . 9 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝐾:(-π[,]π)⟶ℂ)
662451toponunii 22803 . . . . . . . . . 10 (-π[,]π) = ((topGen‘ran (,)) ↾t (-π[,]π))
663662, 596cnprest 23176 . . . . . . . . 9 (((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ Top ∧ ((-π[,]π) ∖ {0}) ⊆ (-π[,]π)) ∧ (𝑠 ∈ ((int‘((topGen‘ran (,)) ↾t (-π[,]π)))‘((-π[,]π) ∖ {0})) ∧ 𝐾:(-π[,]π)⟶ℂ)) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
664627, 660, 661, 663syl12anc 836 . . . . . . . 8 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → (𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠) ↔ (𝐾 ↾ ((-π[,]π) ∖ {0})) ∈ (((((topGen‘ran (,)) ↾t (-π[,]π)) ↾t ((-π[,]π) ∖ {0})) CnP (TopOpen‘ℂfld))‘𝑠)))
665625, 664mpbird 257 . . . . . . 7 ((𝑠 ∈ (-π[,]π) ∧ ¬ 𝑠 = 0) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
666536, 665pm2.61dan 812 . . . . . 6 (𝑠 ∈ (-π[,]π) → 𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))
667666rgen 3046 . . . . 5 𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠)
668 cncnp 23167 . . . . . 6 ((((topGen‘ran (,)) ↾t (-π[,]π)) ∈ (TopOn‘(-π[,]π)) ∧ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)) → (𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ ∀𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠))))
669451, 605, 668mp2an 692 . . . . 5 (𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) ↔ (𝐾:(-π[,]π)⟶ℂ ∧ ∀𝑠 ∈ (-π[,]π)𝐾 ∈ ((((topGen‘ran (,)) ↾t (-π[,]π)) CnP (TopOpen‘ℂfld))‘𝑠)))
67014, 667, 669mpbir2an 711 . . . 4 𝐾 ∈ (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld))
67157, 532, 599cncfcn 24803 . . . . . 6 (((-π[,]π) ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((-π[,]π)–cn→ℂ) = (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)))
672517, 144, 671mp2an 692 . . . . 5 ((-π[,]π)–cn→ℂ) = (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld))
673672eqcomi 2738 . . . 4 (((topGen‘ran (,)) ↾t (-π[,]π)) Cn (TopOpen‘ℂfld)) = ((-π[,]π)–cn→ℂ)
674670, 673eleqtri 2826 . . 3 𝐾 ∈ ((-π[,]π)–cn→ℂ)
675 cncfcdm 24791 . . 3 ((ℝ ⊆ ℂ ∧ 𝐾 ∈ ((-π[,]π)–cn→ℂ)) → (𝐾 ∈ ((-π[,]π)–cn→ℝ) ↔ 𝐾:(-π[,]π)⟶ℝ))
67612, 674, 675mp2an 692 . 2 (𝐾 ∈ ((-π[,]π)–cn→ℝ) ↔ 𝐾:(-π[,]π)⟶ℝ)
67711, 676mpbir 231 1 𝐾 ∈ ((-π[,]π)–cn→ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  ifcif 4488  {csn 4589  {cpr 4591   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  -cneg 11406   / cdiv 11835  2c2 12241  +crp 12951  (,)cioo 13306  [,]cicc 13309  cre 15063  sincsin 16029  cosccos 16030  πcpi 16032  t crest 17383  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  Topctop 22780  TopOnctopon 22797  Clsdccld 22903  intcnt 22904   Cn ccn 23111   CnP ccnp 23112  cnccncf 24769   lim climc 25763   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  fourierdlem77  46181  fourierdlem78  46182  fourierdlem85  46189  fourierdlem88  46192
  Copyright terms: Public domain W3C validator