Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1independent Structured version   Visualization version   GIF version

Theorem clsk1independent 44059
Description: For generalized closure functions, property K1 (isotony) is independent of the properties K0, K2, K3, K4. This contradicts a claim which appears in preprints of Table 2 in Bärbel M. R. Stadler and Peter F. Stadler. "Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry." J. Chem. Inf. Comput. Sci., 42:577-585, 2002. Proceedings MCC 2001, Dubrovnik. The same table row implying K1 follows from the other four appears in the supplemental materials Bärbel M. R. Stadler and Peter F. Stadler. "Basic Properties of Closure Spaces" 2001 on page 12. (Contributed by RP, 5-Jul-2021.)
Hypotheses
Ref Expression
clsnim.k0 (𝜑 ↔ (𝑘‘∅) = ∅)
clsnim.k1 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
clsnim.k2 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
clsnim.k3 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
clsnim.k4 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
Assertion
Ref Expression
clsk1independent ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Distinct variable group:   𝑘,𝑏,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑘,𝑠,𝑏)   𝜓(𝑡,𝑘,𝑠,𝑏)   𝜒(𝑡,𝑘,𝑠,𝑏)   𝜃(𝑡,𝑘,𝑠,𝑏)   𝜏(𝑡,𝑘,𝑠,𝑏)

Proof of Theorem clsk1independent
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 3on 8524 . . 3 3o ∈ On
21elexi 3503 . 2 3o ∈ V
3 eqid 2737 . . . . 5 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
4 notnotr 130 . . . . . . . . . . 11 (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅})
54a1i 11 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅}))
6 sssucid 6464 . . . . . . . . . . . . 13 2o ⊆ suc 2o
7 2oex 8517 . . . . . . . . . . . . . 14 2o ∈ V
87elpw 4604 . . . . . . . . . . . . 13 (2o ∈ 𝒫 suc 2o ↔ 2o ⊆ suc 2o)
96, 8mpbir 231 . . . . . . . . . . . 12 2o ∈ 𝒫 suc 2o
10 df2o3 8514 . . . . . . . . . . . 12 2o = {∅, 1o}
11 df-3o 8508 . . . . . . . . . . . . . 14 3o = suc 2o
1211eqcomi 2746 . . . . . . . . . . . . 13 suc 2o = 3o
1312pweqi 4616 . . . . . . . . . . . 12 𝒫 suc 2o = 𝒫 3o
149, 10, 133eltr3i 2853 . . . . . . . . . . 11 {∅, 1o} ∈ 𝒫 3o
15142a1i 12 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → {∅, 1o} ∈ 𝒫 3o))
165, 15jcad 512 . . . . . . . . 9 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o)))
1716con1d 145 . . . . . . . 8 (𝑟 ∈ 𝒫 3o → (¬ (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) → ¬ 𝑟 = {∅}))
1817anc2ri 556 . . . . . . 7 (𝑟 ∈ 𝒫 3o → (¬ (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) → (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
1918orrd 864 . . . . . 6 (𝑟 ∈ 𝒫 3o → ((𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
20 ifel 4570 . . . . . 6 (if(𝑟 = {∅}, {∅, 1o}, 𝑟) ∈ 𝒫 3o ↔ ((𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
2119, 20sylibr 234 . . . . 5 (𝑟 ∈ 𝒫 3o → if(𝑟 = {∅}, {∅, 1o}, 𝑟) ∈ 𝒫 3o)
223, 21fmpti 7132 . . . 4 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)):𝒫 3o⟶𝒫 3o
232pwex 5380 . . . . 5 𝒫 3o ∈ V
2423, 23elmap 8911 . . . 4 ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o) ↔ (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)):𝒫 3o⟶𝒫 3o)
2522, 24mpbir 231 . . 3 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o)
263clsk1indlem0 44054 . . . . . 6 ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅
273clsk1indlem2 44055 . . . . . 6 𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)
2826, 27pm3.2i 470 . . . . 5 (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
293clsk1indlem3 44056 . . . . . 6 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
303clsk1indlem4 44057 . . . . . 6 𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)
3129, 30pm3.2i 470 . . . . 5 (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
3228, 31pm3.2i 470 . . . 4 ((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
333clsk1indlem1 44058 . . . 4 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
3432, 33pm3.2i 470 . . 3 (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
35 fveq1 6905 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘∅) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅))
3635eqeq1d 2739 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘∅) = ∅ ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅))
37 fveq1 6905 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘𝑠) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
3837sseq2d 4016 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑠 ⊆ (𝑘𝑠) ↔ 𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
3938ralbidv 3178 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4036, 39anbi12d 632 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ↔ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))))
41 fveq1 6905 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘(𝑠𝑡)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)))
42 fveq1 6905 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘𝑡) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
4337, 42uneq12d 4169 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘𝑠) ∪ (𝑘𝑡)) = (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
4441, 43sseq12d 4017 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
45442ralbidv 3221 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
46 id 22 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → 𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)))
4746, 37fveq12d 6913 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘(𝑘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4847, 37eqeq12d 2753 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4948ralbidv 3178 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
5045, 49anbi12d 632 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)) ↔ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))))
5140, 50anbi12d 632 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ↔ ((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))))
52 rexnal2 3135 . . . . . 6 (∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
53 pm4.61 404 . . . . . . . 8 (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)))
5437, 42sseq12d 4017 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘𝑠) ⊆ (𝑘𝑡) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
5554notbid 318 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ (𝑘𝑠) ⊆ (𝑘𝑡) ↔ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
5655anbi2d 630 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
5753, 56bitrid 283 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
58572rexbidv 3222 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
5952, 58bitr3id 285 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
6051, 59anbi12d 632 . . . 4 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))) ↔ (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))))
6160rspcev 3622 . . 3 (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o) ∧ (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))) → ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
6225, 34, 61mp2an 692 . 2 𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
63 pweq 4614 . . . . . 6 (𝑏 = 3o → 𝒫 𝑏 = 𝒫 3o)
6463, 63oveq12d 7449 . . . . 5 (𝑏 = 3o → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 3om 𝒫 3o))
65 pm4.61 404 . . . . . 6 (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ (((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓))
66 clsnim.k0 . . . . . . . . . 10 (𝜑 ↔ (𝑘‘∅) = ∅)
6766a1i 11 . . . . . . . . 9 (𝑏 = 3o → (𝜑 ↔ (𝑘‘∅) = ∅))
68 clsnim.k2 . . . . . . . . . 10 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
6963raleqdv 3326 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)))
7068, 69bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜒 ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)))
7167, 70anbi12d 632 . . . . . . . 8 (𝑏 = 3o → ((𝜑𝜒) ↔ ((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠))))
72 clsnim.k3 . . . . . . . . . 10 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
7363raleqdv 3326 . . . . . . . . . . 11 (𝑏 = 3o → (∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7463, 73raleqbidv 3346 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7572, 74bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜃 ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
76 clsnim.k4 . . . . . . . . . 10 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
7763raleqdv 3326 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7876, 77bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜏 ↔ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7975, 78anbi12d 632 . . . . . . . 8 (𝑏 = 3o → ((𝜃𝜏) ↔ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))))
8071, 79anbi12d 632 . . . . . . 7 (𝑏 = 3o → (((𝜑𝜒) ∧ (𝜃𝜏)) ↔ (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))))
81 clsnim.k1 . . . . . . . . 9 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
8263raleqdv 3326 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8363, 82raleqbidv 3346 . . . . . . . . 9 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8481, 83bitrid 283 . . . . . . . 8 (𝑏 = 3o → (𝜓 ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8584notbid 318 . . . . . . 7 (𝑏 = 3o → (¬ 𝜓 ↔ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8680, 85anbi12d 632 . . . . . 6 (𝑏 = 3o → ((((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8765, 86bitrid 283 . . . . 5 (𝑏 = 3o → (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8864, 87rexeqbidv 3347 . . . 4 (𝑏 = 3o → (∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8988rspcev 3622 . . 3 ((3o ∈ V ∧ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
90 rexnal2 3135 . . . 4 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
91 ralv 3508 . . . 4 (∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9290, 91xchbinx 334 . . 3 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9389, 92sylib 218 . 2 ((3o ∈ V ∧ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
942, 62, 93mp2an 692 1 ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  wal 1538   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cun 3949  wss 3951  c0 4333  ifcif 4525  𝒫 cpw 4600  {csn 4626  {cpr 4628  cmpt 5225  Oncon0 6384  suc csuc 6386  wf 6557  cfv 6561  (class class class)co 7431  1oc1o 8499  2oc2o 8500  3oc3o 8501  m cmap 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1o 8506  df-2o 8507  df-3o 8508  df-map 8868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator