Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1independent Structured version   Visualization version   GIF version

Theorem clsk1independent 44008
Description: For generalized closure functions, property K1 (isotony) is independent of the properties K0, K2, K3, K4. This contradicts a claim which appears in preprints of Table 2 in Bärbel M. R. Stadler and Peter F. Stadler. "Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry." J. Chem. Inf. Comput. Sci., 42:577-585, 2002. Proceedings MCC 2001, Dubrovnik. The same table row implying K1 follows from the other four appears in the supplemental materials Bärbel M. R. Stadler and Peter F. Stadler. "Basic Properties of Closure Spaces" 2001 on page 12. (Contributed by RP, 5-Jul-2021.)
Hypotheses
Ref Expression
clsnim.k0 (𝜑 ↔ (𝑘‘∅) = ∅)
clsnim.k1 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
clsnim.k2 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
clsnim.k3 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
clsnim.k4 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
Assertion
Ref Expression
clsk1independent ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Distinct variable group:   𝑘,𝑏,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑘,𝑠,𝑏)   𝜓(𝑡,𝑘,𝑠,𝑏)   𝜒(𝑡,𝑘,𝑠,𝑏)   𝜃(𝑡,𝑘,𝑠,𝑏)   𝜏(𝑡,𝑘,𝑠,𝑏)

Proof of Theorem clsk1independent
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 3on 8540 . . 3 3o ∈ On
21elexi 3511 . 2 3o ∈ V
3 eqid 2740 . . . . 5 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
4 notnotr 130 . . . . . . . . . . 11 (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅})
54a1i 11 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅}))
6 sssucid 6475 . . . . . . . . . . . . 13 2o ⊆ suc 2o
7 2oex 8533 . . . . . . . . . . . . . 14 2o ∈ V
87elpw 4626 . . . . . . . . . . . . 13 (2o ∈ 𝒫 suc 2o ↔ 2o ⊆ suc 2o)
96, 8mpbir 231 . . . . . . . . . . . 12 2o ∈ 𝒫 suc 2o
10 df2o3 8530 . . . . . . . . . . . 12 2o = {∅, 1o}
11 df-3o 8524 . . . . . . . . . . . . . 14 3o = suc 2o
1211eqcomi 2749 . . . . . . . . . . . . 13 suc 2o = 3o
1312pweqi 4638 . . . . . . . . . . . 12 𝒫 suc 2o = 𝒫 3o
149, 10, 133eltr3i 2856 . . . . . . . . . . 11 {∅, 1o} ∈ 𝒫 3o
15142a1i 12 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → {∅, 1o} ∈ 𝒫 3o))
165, 15jcad 512 . . . . . . . . 9 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o)))
1716con1d 145 . . . . . . . 8 (𝑟 ∈ 𝒫 3o → (¬ (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) → ¬ 𝑟 = {∅}))
1817anc2ri 556 . . . . . . 7 (𝑟 ∈ 𝒫 3o → (¬ (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) → (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
1918orrd 862 . . . . . 6 (𝑟 ∈ 𝒫 3o → ((𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
20 ifel 4592 . . . . . 6 (if(𝑟 = {∅}, {∅, 1o}, 𝑟) ∈ 𝒫 3o ↔ ((𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
2119, 20sylibr 234 . . . . 5 (𝑟 ∈ 𝒫 3o → if(𝑟 = {∅}, {∅, 1o}, 𝑟) ∈ 𝒫 3o)
223, 21fmpti 7146 . . . 4 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)):𝒫 3o⟶𝒫 3o
232pwex 5398 . . . . 5 𝒫 3o ∈ V
2423, 23elmap 8929 . . . 4 ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o) ↔ (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)):𝒫 3o⟶𝒫 3o)
2522, 24mpbir 231 . . 3 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o)
263clsk1indlem0 44003 . . . . . 6 ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅
273clsk1indlem2 44004 . . . . . 6 𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)
2826, 27pm3.2i 470 . . . . 5 (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
293clsk1indlem3 44005 . . . . . 6 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
303clsk1indlem4 44006 . . . . . 6 𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)
3129, 30pm3.2i 470 . . . . 5 (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
3228, 31pm3.2i 470 . . . 4 ((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
333clsk1indlem1 44007 . . . 4 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
3432, 33pm3.2i 470 . . 3 (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
35 fveq1 6919 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘∅) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅))
3635eqeq1d 2742 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘∅) = ∅ ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅))
37 fveq1 6919 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘𝑠) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
3837sseq2d 4041 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑠 ⊆ (𝑘𝑠) ↔ 𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
3938ralbidv 3184 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4036, 39anbi12d 631 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ↔ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))))
41 fveq1 6919 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘(𝑠𝑡)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)))
42 fveq1 6919 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘𝑡) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
4337, 42uneq12d 4192 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘𝑠) ∪ (𝑘𝑡)) = (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
4441, 43sseq12d 4042 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
45442ralbidv 3227 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
46 id 22 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → 𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)))
4746, 37fveq12d 6927 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘(𝑘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4847, 37eqeq12d 2756 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4948ralbidv 3184 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
5045, 49anbi12d 631 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)) ↔ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))))
5140, 50anbi12d 631 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ↔ ((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))))
52 rexnal2 3141 . . . . . 6 (∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
53 pm4.61 404 . . . . . . . 8 (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)))
5437, 42sseq12d 4042 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘𝑠) ⊆ (𝑘𝑡) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
5554notbid 318 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ (𝑘𝑠) ⊆ (𝑘𝑡) ↔ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
5655anbi2d 629 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
5753, 56bitrid 283 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
58572rexbidv 3228 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
5952, 58bitr3id 285 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
6051, 59anbi12d 631 . . . 4 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))) ↔ (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))))
6160rspcev 3635 . . 3 (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o) ∧ (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))) → ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
6225, 34, 61mp2an 691 . 2 𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
63 pweq 4636 . . . . . 6 (𝑏 = 3o → 𝒫 𝑏 = 𝒫 3o)
6463, 63oveq12d 7466 . . . . 5 (𝑏 = 3o → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 3om 𝒫 3o))
65 pm4.61 404 . . . . . 6 (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ (((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓))
66 clsnim.k0 . . . . . . . . . 10 (𝜑 ↔ (𝑘‘∅) = ∅)
6766a1i 11 . . . . . . . . 9 (𝑏 = 3o → (𝜑 ↔ (𝑘‘∅) = ∅))
68 clsnim.k2 . . . . . . . . . 10 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
6963raleqdv 3334 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)))
7068, 69bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜒 ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)))
7167, 70anbi12d 631 . . . . . . . 8 (𝑏 = 3o → ((𝜑𝜒) ↔ ((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠))))
72 clsnim.k3 . . . . . . . . . 10 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
7363raleqdv 3334 . . . . . . . . . . 11 (𝑏 = 3o → (∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7463, 73raleqbidv 3354 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7572, 74bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜃 ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
76 clsnim.k4 . . . . . . . . . 10 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
7763raleqdv 3334 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7876, 77bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜏 ↔ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7975, 78anbi12d 631 . . . . . . . 8 (𝑏 = 3o → ((𝜃𝜏) ↔ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))))
8071, 79anbi12d 631 . . . . . . 7 (𝑏 = 3o → (((𝜑𝜒) ∧ (𝜃𝜏)) ↔ (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))))
81 clsnim.k1 . . . . . . . . 9 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
8263raleqdv 3334 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8363, 82raleqbidv 3354 . . . . . . . . 9 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8481, 83bitrid 283 . . . . . . . 8 (𝑏 = 3o → (𝜓 ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8584notbid 318 . . . . . . 7 (𝑏 = 3o → (¬ 𝜓 ↔ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8680, 85anbi12d 631 . . . . . 6 (𝑏 = 3o → ((((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8765, 86bitrid 283 . . . . 5 (𝑏 = 3o → (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8864, 87rexeqbidv 3355 . . . 4 (𝑏 = 3o → (∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8988rspcev 3635 . . 3 ((3o ∈ V ∧ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
90 rexnal2 3141 . . . 4 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
91 ralv 3516 . . . 4 (∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9290, 91xchbinx 334 . . 3 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9389, 92sylib 218 . 2 ((3o ∈ V ∧ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
942, 62, 93mp2an 691 1 ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  wal 1535   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cun 3974  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648  {cpr 4650  cmpt 5249  Oncon0 6395  suc csuc 6397  wf 6569  cfv 6573  (class class class)co 7448  1oc1o 8515  2oc2o 8516  3oc3o 8517  m cmap 8884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-xor 1509  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522  df-2o 8523  df-3o 8524  df-map 8886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator