Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1independent Structured version   Visualization version   GIF version

Theorem clsk1independent 44058
Description: For generalized closure functions, property K1 (isotony) is independent of the properties K0, K2, K3, K4. This contradicts a claim which appears in preprints of Table 2 in Bärbel M. R. Stadler and Peter F. Stadler. "Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry." J. Chem. Inf. Comput. Sci., 42:577-585, 2002. Proceedings MCC 2001, Dubrovnik. The same table row implying K1 follows from the other four appears in the supplemental materials Bärbel M. R. Stadler and Peter F. Stadler. "Basic Properties of Closure Spaces" 2001 on page 12. (Contributed by RP, 5-Jul-2021.)
Hypotheses
Ref Expression
clsnim.k0 (𝜑 ↔ (𝑘‘∅) = ∅)
clsnim.k1 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
clsnim.k2 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
clsnim.k3 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
clsnim.k4 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
Assertion
Ref Expression
clsk1independent ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Distinct variable group:   𝑘,𝑏,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑘,𝑠,𝑏)   𝜓(𝑡,𝑘,𝑠,𝑏)   𝜒(𝑡,𝑘,𝑠,𝑏)   𝜃(𝑡,𝑘,𝑠,𝑏)   𝜏(𝑡,𝑘,𝑠,𝑏)

Proof of Theorem clsk1independent
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 3on 8396 . . 3 3o ∈ On
21elexi 3457 . 2 3o ∈ V
3 eqid 2730 . . . . 5 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
4 notnotr 130 . . . . . . . . . . 11 (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅})
54a1i 11 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅}))
6 sssucid 6384 . . . . . . . . . . . . 13 2o ⊆ suc 2o
7 2oex 8391 . . . . . . . . . . . . . 14 2o ∈ V
87elpw 4552 . . . . . . . . . . . . 13 (2o ∈ 𝒫 suc 2o ↔ 2o ⊆ suc 2o)
96, 8mpbir 231 . . . . . . . . . . . 12 2o ∈ 𝒫 suc 2o
10 df2o3 8388 . . . . . . . . . . . 12 2o = {∅, 1o}
11 df-3o 8382 . . . . . . . . . . . . . 14 3o = suc 2o
1211eqcomi 2739 . . . . . . . . . . . . 13 suc 2o = 3o
1312pweqi 4564 . . . . . . . . . . . 12 𝒫 suc 2o = 𝒫 3o
149, 10, 133eltr3i 2841 . . . . . . . . . . 11 {∅, 1o} ∈ 𝒫 3o
15142a1i 12 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → {∅, 1o} ∈ 𝒫 3o))
165, 15jcad 512 . . . . . . . . 9 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o)))
1716con1d 145 . . . . . . . 8 (𝑟 ∈ 𝒫 3o → (¬ (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) → ¬ 𝑟 = {∅}))
1817anc2ri 556 . . . . . . 7 (𝑟 ∈ 𝒫 3o → (¬ (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) → (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
1918orrd 863 . . . . . 6 (𝑟 ∈ 𝒫 3o → ((𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
20 ifel 4518 . . . . . 6 (if(𝑟 = {∅}, {∅, 1o}, 𝑟) ∈ 𝒫 3o ↔ ((𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
2119, 20sylibr 234 . . . . 5 (𝑟 ∈ 𝒫 3o → if(𝑟 = {∅}, {∅, 1o}, 𝑟) ∈ 𝒫 3o)
223, 21fmpti 7040 . . . 4 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)):𝒫 3o⟶𝒫 3o
232pwex 5316 . . . . 5 𝒫 3o ∈ V
2423, 23elmap 8790 . . . 4 ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o) ↔ (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)):𝒫 3o⟶𝒫 3o)
2522, 24mpbir 231 . . 3 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o)
263clsk1indlem0 44053 . . . . . 6 ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅
273clsk1indlem2 44054 . . . . . 6 𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)
2826, 27pm3.2i 470 . . . . 5 (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
293clsk1indlem3 44055 . . . . . 6 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
303clsk1indlem4 44056 . . . . . 6 𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)
3129, 30pm3.2i 470 . . . . 5 (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
3228, 31pm3.2i 470 . . . 4 ((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
333clsk1indlem1 44057 . . . 4 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
3432, 33pm3.2i 470 . . 3 (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
35 fveq1 6816 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘∅) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅))
3635eqeq1d 2732 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘∅) = ∅ ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅))
37 fveq1 6816 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘𝑠) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
3837sseq2d 3965 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑠 ⊆ (𝑘𝑠) ↔ 𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
3938ralbidv 3153 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4036, 39anbi12d 632 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ↔ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))))
41 fveq1 6816 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘(𝑠𝑡)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)))
42 fveq1 6816 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘𝑡) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
4337, 42uneq12d 4117 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘𝑠) ∪ (𝑘𝑡)) = (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
4441, 43sseq12d 3966 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
45442ralbidv 3194 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
46 id 22 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → 𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)))
4746, 37fveq12d 6824 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘(𝑘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4847, 37eqeq12d 2746 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4948ralbidv 3153 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
5045, 49anbi12d 632 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)) ↔ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))))
5140, 50anbi12d 632 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ↔ ((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))))
52 rexnal2 3112 . . . . . 6 (∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
53 pm4.61 404 . . . . . . . 8 (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)))
5437, 42sseq12d 3966 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘𝑠) ⊆ (𝑘𝑡) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
5554notbid 318 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ (𝑘𝑠) ⊆ (𝑘𝑡) ↔ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
5655anbi2d 630 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
5753, 56bitrid 283 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
58572rexbidv 3195 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
5952, 58bitr3id 285 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
6051, 59anbi12d 632 . . . 4 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))) ↔ (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))))
6160rspcev 3575 . . 3 (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o) ∧ (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))) → ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
6225, 34, 61mp2an 692 . 2 𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
63 pweq 4562 . . . . . 6 (𝑏 = 3o → 𝒫 𝑏 = 𝒫 3o)
6463, 63oveq12d 7359 . . . . 5 (𝑏 = 3o → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 3om 𝒫 3o))
65 pm4.61 404 . . . . . 6 (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ (((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓))
66 clsnim.k0 . . . . . . . . . 10 (𝜑 ↔ (𝑘‘∅) = ∅)
6766a1i 11 . . . . . . . . 9 (𝑏 = 3o → (𝜑 ↔ (𝑘‘∅) = ∅))
68 clsnim.k2 . . . . . . . . . 10 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
6963raleqdv 3290 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)))
7068, 69bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜒 ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)))
7167, 70anbi12d 632 . . . . . . . 8 (𝑏 = 3o → ((𝜑𝜒) ↔ ((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠))))
72 clsnim.k3 . . . . . . . . . 10 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
7363raleqdv 3290 . . . . . . . . . . 11 (𝑏 = 3o → (∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7463, 73raleqbidv 3310 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7572, 74bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜃 ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
76 clsnim.k4 . . . . . . . . . 10 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
7763raleqdv 3290 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7876, 77bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜏 ↔ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7975, 78anbi12d 632 . . . . . . . 8 (𝑏 = 3o → ((𝜃𝜏) ↔ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))))
8071, 79anbi12d 632 . . . . . . 7 (𝑏 = 3o → (((𝜑𝜒) ∧ (𝜃𝜏)) ↔ (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))))
81 clsnim.k1 . . . . . . . . 9 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
8263raleqdv 3290 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8363, 82raleqbidv 3310 . . . . . . . . 9 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8481, 83bitrid 283 . . . . . . . 8 (𝑏 = 3o → (𝜓 ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8584notbid 318 . . . . . . 7 (𝑏 = 3o → (¬ 𝜓 ↔ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8680, 85anbi12d 632 . . . . . 6 (𝑏 = 3o → ((((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8765, 86bitrid 283 . . . . 5 (𝑏 = 3o → (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8864, 87rexeqbidv 3311 . . . 4 (𝑏 = 3o → (∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8988rspcev 3575 . . 3 ((3o ∈ V ∧ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
90 rexnal2 3112 . . . 4 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
91 ralv 3461 . . . 4 (∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9290, 91xchbinx 334 . . 3 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9389, 92sylib 218 . 2 ((3o ∈ V ∧ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
942, 62, 93mp2an 692 1 ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1539   = wceq 1541  wcel 2110  wral 3045  wrex 3054  Vcvv 3434  cun 3898  wss 3900  c0 4281  ifcif 4473  𝒫 cpw 4548  {csn 4574  {cpr 4576  cmpt 5170  Oncon0 6302  suc csuc 6304  wf 6473  cfv 6477  (class class class)co 7341  1oc1o 8373  2oc2o 8374  3oc3o 8375  m cmap 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-reg 9473
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6305  df-on 6306  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1o 8380  df-2o 8381  df-3o 8382  df-map 8747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator