Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1independent Structured version   Visualization version   GIF version

Theorem clsk1independent 44144
Description: For generalized closure functions, property K1 (isotony) is independent of the properties K0, K2, K3, K4. This contradicts a claim which appears in preprints of Table 2 in Bärbel M. R. Stadler and Peter F. Stadler. "Generalized Topological Spaces in Evolutionary Theory and Combinatorial Chemistry." J. Chem. Inf. Comput. Sci., 42:577-585, 2002. Proceedings MCC 2001, Dubrovnik. The same table row implying K1 follows from the other four appears in the supplemental materials Bärbel M. R. Stadler and Peter F. Stadler. "Basic Properties of Closure Spaces" 2001 on page 12. (Contributed by RP, 5-Jul-2021.)
Hypotheses
Ref Expression
clsnim.k0 (𝜑 ↔ (𝑘‘∅) = ∅)
clsnim.k1 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
clsnim.k2 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
clsnim.k3 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
clsnim.k4 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
Assertion
Ref Expression
clsk1independent ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Distinct variable group:   𝑘,𝑏,𝑠,𝑡
Allowed substitution hints:   𝜑(𝑡,𝑘,𝑠,𝑏)   𝜓(𝑡,𝑘,𝑠,𝑏)   𝜒(𝑡,𝑘,𝑠,𝑏)   𝜃(𝑡,𝑘,𝑠,𝑏)   𝜏(𝑡,𝑘,𝑠,𝑏)

Proof of Theorem clsk1independent
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 3on 8407 . . 3 3o ∈ On
21elexi 3459 . 2 3o ∈ V
3 eqid 2731 . . . . 5 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))
4 notnotr 130 . . . . . . . . . . 11 (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅})
54a1i 11 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → 𝑟 = {∅}))
6 sssucid 6394 . . . . . . . . . . . . 13 2o ⊆ suc 2o
7 2oex 8402 . . . . . . . . . . . . . 14 2o ∈ V
87elpw 4553 . . . . . . . . . . . . 13 (2o ∈ 𝒫 suc 2o ↔ 2o ⊆ suc 2o)
96, 8mpbir 231 . . . . . . . . . . . 12 2o ∈ 𝒫 suc 2o
10 df2o3 8399 . . . . . . . . . . . 12 2o = {∅, 1o}
11 df-3o 8393 . . . . . . . . . . . . . 14 3o = suc 2o
1211eqcomi 2740 . . . . . . . . . . . . 13 suc 2o = 3o
1312pweqi 4565 . . . . . . . . . . . 12 𝒫 suc 2o = 𝒫 3o
149, 10, 133eltr3i 2843 . . . . . . . . . . 11 {∅, 1o} ∈ 𝒫 3o
15142a1i 12 . . . . . . . . . 10 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → {∅, 1o} ∈ 𝒫 3o))
165, 15jcad 512 . . . . . . . . 9 (𝑟 ∈ 𝒫 3o → (¬ ¬ 𝑟 = {∅} → (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o)))
1716con1d 145 . . . . . . . 8 (𝑟 ∈ 𝒫 3o → (¬ (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) → ¬ 𝑟 = {∅}))
1817anc2ri 556 . . . . . . 7 (𝑟 ∈ 𝒫 3o → (¬ (𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) → (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
1918orrd 863 . . . . . 6 (𝑟 ∈ 𝒫 3o → ((𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
20 ifel 4519 . . . . . 6 (if(𝑟 = {∅}, {∅, 1o}, 𝑟) ∈ 𝒫 3o ↔ ((𝑟 = {∅} ∧ {∅, 1o} ∈ 𝒫 3o) ∨ (¬ 𝑟 = {∅} ∧ 𝑟 ∈ 𝒫 3o)))
2119, 20sylibr 234 . . . . 5 (𝑟 ∈ 𝒫 3o → if(𝑟 = {∅}, {∅, 1o}, 𝑟) ∈ 𝒫 3o)
223, 21fmpti 7051 . . . 4 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)):𝒫 3o⟶𝒫 3o
232pwex 5320 . . . . 5 𝒫 3o ∈ V
2423, 23elmap 8801 . . . 4 ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o) ↔ (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)):𝒫 3o⟶𝒫 3o)
2522, 24mpbir 231 . . 3 (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o)
263clsk1indlem0 44139 . . . . . 6 ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅
273clsk1indlem2 44140 . . . . . 6 𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)
2826, 27pm3.2i 470 . . . . 5 (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
293clsk1indlem3 44141 . . . . . 6 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
303clsk1indlem4 44142 . . . . . 6 𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)
3129, 30pm3.2i 470 . . . . 5 (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
3228, 31pm3.2i 470 . . . 4 ((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
333clsk1indlem1 44143 . . . 4 𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
3432, 33pm3.2i 470 . . 3 (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
35 fveq1 6827 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘∅) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅))
3635eqeq1d 2733 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘∅) = ∅ ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅))
37 fveq1 6827 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘𝑠) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))
3837sseq2d 3962 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑠 ⊆ (𝑘𝑠) ↔ 𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
3938ralbidv 3155 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4036, 39anbi12d 632 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ↔ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))))
41 fveq1 6827 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘(𝑠𝑡)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)))
42 fveq1 6827 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘𝑡) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))
4337, 42uneq12d 4118 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘𝑠) ∪ (𝑘𝑡)) = (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
4441, 43sseq12d 3963 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
45442ralbidv 3196 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
46 id 22 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → 𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)))
4746, 37fveq12d 6835 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (𝑘‘(𝑘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4847, 37eqeq12d 2747 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
4948ralbidv 3155 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))
5045, 49anbi12d 632 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)) ↔ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))))
5140, 50anbi12d 632 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ↔ ((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)))))
52 rexnal2 3114 . . . . . 6 (∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
53 pm4.61 404 . . . . . . . 8 (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)))
5437, 42sseq12d 3963 . . . . . . . . . 10 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑘𝑠) ⊆ (𝑘𝑡) ↔ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
5554notbid 318 . . . . . . . . 9 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ (𝑘𝑠) ⊆ (𝑘𝑡) ↔ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))
5655anbi2d 630 . . . . . . . 8 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → ((𝑠𝑡 ∧ ¬ (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
5753, 56bitrid 283 . . . . . . 7 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ (𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
58572rexbidv 3197 . . . . . 6 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o ¬ (𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
5952, 58bitr3id 285 . . . . 5 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡))))
6051, 59anbi12d 632 . . . 4 (𝑘 = (𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) → (((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))) ↔ (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))))
6160rspcev 3572 . . 3 (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟)) ∈ (𝒫 3om 𝒫 3o) ∧ (((((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘(𝑠𝑡)) ⊆ (((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ∪ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠)) = ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠))) ∧ ∃𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 ∧ ¬ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑠) ⊆ ((𝑟 ∈ 𝒫 3o ↦ if(𝑟 = {∅}, {∅, 1o}, 𝑟))‘𝑡)))) → ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
6225, 34, 61mp2an 692 . 2 𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
63 pweq 4563 . . . . . 6 (𝑏 = 3o → 𝒫 𝑏 = 𝒫 3o)
6463, 63oveq12d 7370 . . . . 5 (𝑏 = 3o → (𝒫 𝑏m 𝒫 𝑏) = (𝒫 3om 𝒫 3o))
65 pm4.61 404 . . . . . 6 (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ (((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓))
66 clsnim.k0 . . . . . . . . . 10 (𝜑 ↔ (𝑘‘∅) = ∅)
6766a1i 11 . . . . . . . . 9 (𝑏 = 3o → (𝜑 ↔ (𝑘‘∅) = ∅))
68 clsnim.k2 . . . . . . . . . 10 (𝜒 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠))
6963raleqdv 3292 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑠 ⊆ (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)))
7068, 69bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜒 ↔ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)))
7167, 70anbi12d 632 . . . . . . . 8 (𝑏 = 3o → ((𝜑𝜒) ↔ ((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠))))
72 clsnim.k3 . . . . . . . . . 10 (𝜃 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)))
7363raleqdv 3292 . . . . . . . . . . 11 (𝑏 = 3o → (∀𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7463, 73raleqbidv 3312 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
7572, 74bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜃 ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡))))
76 clsnim.k4 . . . . . . . . . 10 (𝜏 ↔ ∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠))
7763raleqdv 3292 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏(𝑘‘(𝑘𝑠)) = (𝑘𝑠) ↔ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7876, 77bitrid 283 . . . . . . . . 9 (𝑏 = 3o → (𝜏 ↔ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))
7975, 78anbi12d 632 . . . . . . . 8 (𝑏 = 3o → ((𝜃𝜏) ↔ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))))
8071, 79anbi12d 632 . . . . . . 7 (𝑏 = 3o → (((𝜑𝜒) ∧ (𝜃𝜏)) ↔ (((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠)))))
81 clsnim.k1 . . . . . . . . 9 (𝜓 ↔ ∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))
8263raleqdv 3292 . . . . . . . . . 10 (𝑏 = 3o → (∀𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8363, 82raleqbidv 3312 . . . . . . . . 9 (𝑏 = 3o → (∀𝑠 ∈ 𝒫 𝑏𝑡 ∈ 𝒫 𝑏(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)) ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8481, 83bitrid 283 . . . . . . . 8 (𝑏 = 3o → (𝜓 ↔ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8584notbid 318 . . . . . . 7 (𝑏 = 3o → (¬ 𝜓 ↔ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡))))
8680, 85anbi12d 632 . . . . . 6 (𝑏 = 3o → ((((𝜑𝜒) ∧ (𝜃𝜏)) ∧ ¬ 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8765, 86bitrid 283 . . . . 5 (𝑏 = 3o → (¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8864, 87rexeqbidv 3313 . . . 4 (𝑏 = 3o → (∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))))
8988rspcev 3572 . . 3 ((3o ∈ V ∧ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
90 rexnal2 3114 . . . 4 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
91 ralv 3463 . . . 4 (∀𝑏 ∈ V ∀𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9290, 91xchbinx 334 . . 3 (∃𝑏 ∈ V ∃𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏) ¬ (((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓) ↔ ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
9389, 92sylib 218 . 2 ((3o ∈ V ∧ ∃𝑘 ∈ (𝒫 3om 𝒫 3o)((((𝑘‘∅) = ∅ ∧ ∀𝑠 ∈ 𝒫 3o𝑠 ⊆ (𝑘𝑠)) ∧ (∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑘‘(𝑠𝑡)) ⊆ ((𝑘𝑠) ∪ (𝑘𝑡)) ∧ ∀𝑠 ∈ 𝒫 3o(𝑘‘(𝑘𝑠)) = (𝑘𝑠))) ∧ ¬ ∀𝑠 ∈ 𝒫 3o𝑡 ∈ 𝒫 3o(𝑠𝑡 → (𝑘𝑠) ⊆ (𝑘𝑡)))) → ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓))
942, 62, 93mp2an 692 1 ¬ ∀𝑏𝑘 ∈ (𝒫 𝑏m 𝒫 𝑏)(((𝜑𝜒) ∧ (𝜃𝜏)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cun 3895  wss 3897  c0 4282  ifcif 4474  𝒫 cpw 4549  {csn 4575  {cpr 4577  cmpt 5174  Oncon0 6312  suc csuc 6314  wf 6483  cfv 6487  (class class class)co 7352  1oc1o 8384  2oc2o 8385  3oc3o 8386  m cmap 8756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-reg 9484
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6315  df-on 6316  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1o 8391  df-2o 8392  df-3o 8393  df-map 8758
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator