Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > raddcn | Structured version Visualization version GIF version |
Description: Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
Ref | Expression |
---|---|
raddcn.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
Ref | Expression |
---|---|
raddcn | ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | addcn 23934 | . . . . 5 ⊢ + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
3 | ax-resscn 10859 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
4 | xpss12 5595 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
5 | 3, 3, 4 | mp2an 688 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
6 | 1 | cnfldtop 23853 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
7 | 1 | cnfldtopon 23852 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
8 | 7 | toponunii 21973 | . . . . . . 7 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
9 | 6, 6, 8, 8 | txunii 22652 | . . . . . 6 ⊢ (ℂ × ℂ) = ∪ ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) |
10 | 9 | cnrest 22344 | . . . . 5 ⊢ (( + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld))) |
11 | 2, 5, 10 | mp2an 688 | . . . 4 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) |
12 | reex 10893 | . . . . . . 7 ⊢ ℝ ∈ V | |
13 | txrest 22690 | . . . . . . 7 ⊢ ((((TopOpen‘ℂfld) ∈ Top ∧ (TopOpen‘ℂfld) ∈ Top) ∧ (ℝ ∈ V ∧ ℝ ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ))) | |
14 | 6, 6, 12, 12, 13 | mp4an 689 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) |
15 | raddcn.1 | . . . . . . . 8 ⊢ 𝐽 = (topGen‘ran (,)) | |
16 | 1 | tgioo2 23872 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
17 | 15, 16 | eqtr2i 2767 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t ℝ) = 𝐽 |
18 | 17, 17 | oveq12i 7267 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 ×t 𝐽) |
19 | 14, 18 | eqtri 2766 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (𝐽 ×t 𝐽) |
20 | 19 | oveq1i 7265 | . . . 4 ⊢ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) = ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) |
21 | 11, 20 | eleqtri 2837 | . . 3 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) |
22 | ax-addf 10881 | . . . . . . . . . 10 ⊢ + :(ℂ × ℂ)⟶ℂ | |
23 | ffn 6584 | . . . . . . . . . 10 ⊢ ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ)) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ + Fn (ℂ × ℂ) |
25 | fnssres 6539 | . . . . . . . . 9 ⊢ (( + Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
26 | 24, 5, 25 | mp2an 688 | . . . . . . . 8 ⊢ ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
27 | fnov 7383 | . . . . . . . 8 ⊢ (( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦))) | |
28 | 26, 27 | mpbi 229 | . . . . . . 7 ⊢ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) |
29 | ovres 7416 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥( + ↾ (ℝ × ℝ))𝑦) = (𝑥 + 𝑦)) | |
30 | 29 | mpoeq3ia 7331 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
31 | 28, 30 | eqtri 2766 | . . . . . 6 ⊢ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
32 | 31 | rneqi 5835 | . . . . 5 ⊢ ran ( + ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
33 | readdcl 10885 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
34 | 33 | rgen2 3126 | . . . . . 6 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ |
35 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) | |
36 | 35 | rnmposs 30913 | . . . . . 6 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ) |
37 | 34, 36 | ax-mp 5 | . . . . 5 ⊢ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ |
38 | 32, 37 | eqsstri 3951 | . . . 4 ⊢ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ |
39 | cnrest2 22345 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
40 | 7, 38, 3, 39 | mp3an 1459 | . . 3 ⊢ (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
41 | 21, 40 | mpbi 229 | . 2 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
42 | 17 | oveq2i 7266 | . 2 ⊢ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = ((𝐽 ×t 𝐽) Cn 𝐽) |
43 | 41, 31, 42 | 3eltr3i 2851 | 1 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 × cxp 5578 ran crn 5581 ↾ cres 5582 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℂcc 10800 ℝcr 10801 + caddc 10805 (,)cioo 13008 ↾t crest 17048 TopOpenctopn 17049 topGenctg 17065 ℂfldccnfld 20510 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 ×t ctx 22619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 |
This theorem is referenced by: rrvadd 32319 |
Copyright terms: Public domain | W3C validator |