![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > raddcn | Structured version Visualization version GIF version |
Description: Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
Ref | Expression |
---|---|
raddcn.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
Ref | Expression |
---|---|
raddcn | ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | addcn 24228 | . . . . 5 ⊢ + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
3 | ax-resscn 11108 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
4 | xpss12 5648 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
5 | 3, 3, 4 | mp2an 690 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
6 | 1 | cnfldtop 24147 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
7 | 1 | cnfldtopon 24146 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
8 | 7 | toponunii 22265 | . . . . . . 7 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
9 | 6, 6, 8, 8 | txunii 22944 | . . . . . 6 ⊢ (ℂ × ℂ) = ∪ ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) |
10 | 9 | cnrest 22636 | . . . . 5 ⊢ (( + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld))) |
11 | 2, 5, 10 | mp2an 690 | . . . 4 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) |
12 | reex 11142 | . . . . . . 7 ⊢ ℝ ∈ V | |
13 | txrest 22982 | . . . . . . 7 ⊢ ((((TopOpen‘ℂfld) ∈ Top ∧ (TopOpen‘ℂfld) ∈ Top) ∧ (ℝ ∈ V ∧ ℝ ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ))) | |
14 | 6, 6, 12, 12, 13 | mp4an 691 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) |
15 | raddcn.1 | . . . . . . . 8 ⊢ 𝐽 = (topGen‘ran (,)) | |
16 | 1 | tgioo2 24166 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
17 | 15, 16 | eqtr2i 2765 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t ℝ) = 𝐽 |
18 | 17, 17 | oveq12i 7369 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 ×t 𝐽) |
19 | 14, 18 | eqtri 2764 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (𝐽 ×t 𝐽) |
20 | 19 | oveq1i 7367 | . . . 4 ⊢ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) = ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) |
21 | 11, 20 | eleqtri 2836 | . . 3 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) |
22 | ax-addf 11130 | . . . . . . . . . 10 ⊢ + :(ℂ × ℂ)⟶ℂ | |
23 | ffn 6668 | . . . . . . . . . 10 ⊢ ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ)) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ + Fn (ℂ × ℂ) |
25 | fnssres 6624 | . . . . . . . . 9 ⊢ (( + Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
26 | 24, 5, 25 | mp2an 690 | . . . . . . . 8 ⊢ ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
27 | fnov 7487 | . . . . . . . 8 ⊢ (( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦))) | |
28 | 26, 27 | mpbi 229 | . . . . . . 7 ⊢ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) |
29 | ovres 7520 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥( + ↾ (ℝ × ℝ))𝑦) = (𝑥 + 𝑦)) | |
30 | 29 | mpoeq3ia 7435 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
31 | 28, 30 | eqtri 2764 | . . . . . 6 ⊢ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
32 | 31 | rneqi 5892 | . . . . 5 ⊢ ran ( + ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
33 | readdcl 11134 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
34 | 33 | rgen2 3194 | . . . . . 6 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ |
35 | eqid 2736 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) | |
36 | 35 | rnmposs 31590 | . . . . . 6 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ) |
37 | 34, 36 | ax-mp 5 | . . . . 5 ⊢ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ |
38 | 32, 37 | eqsstri 3978 | . . . 4 ⊢ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ |
39 | cnrest2 22637 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
40 | 7, 38, 3, 39 | mp3an 1461 | . . 3 ⊢ (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
41 | 21, 40 | mpbi 229 | . 2 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
42 | 17 | oveq2i 7368 | . 2 ⊢ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = ((𝐽 ×t 𝐽) Cn 𝐽) |
43 | 41, 31, 42 | 3eltr3i 2850 | 1 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 ⊆ wss 3910 × cxp 5631 ran crn 5634 ↾ cres 5635 Fn wfn 6491 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ℂcc 11049 ℝcr 11050 + caddc 11054 (,)cioo 13264 ↾t crest 17302 TopOpenctopn 17303 topGenctg 17319 ℂfldccnfld 20796 Topctop 22242 TopOnctopon 22259 Cn ccn 22575 ×t ctx 22911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-icc 13271 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cn 22578 df-cnp 22579 df-tx 22913 df-hmeo 23106 df-xms 23673 df-ms 23674 df-tms 23675 |
This theorem is referenced by: rrvadd 33052 |
Copyright terms: Public domain | W3C validator |