| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > raddcn | Structured version Visualization version GIF version | ||
| Description: Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
| Ref | Expression |
|---|---|
| raddcn.1 | ⊢ 𝐽 = (topGen‘ran (,)) |
| Ref | Expression |
|---|---|
| raddcn | ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 2 | 1 | addcn 24761 | . . . . 5 ⊢ + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) |
| 3 | ax-resscn 11132 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 4 | xpss12 5656 | . . . . . 6 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
| 5 | 3, 3, 4 | mp2an 692 | . . . . 5 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
| 6 | 1 | cnfldtop 24678 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 7 | 1 | cnfldtopon 24677 | . . . . . . . 8 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
| 8 | 7 | toponunii 22810 | . . . . . . 7 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
| 9 | 6, 6, 8, 8 | txunii 23487 | . . . . . 6 ⊢ (ℂ × ℂ) = ∪ ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) |
| 10 | 9 | cnrest 23179 | . . . . 5 ⊢ (( + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld))) |
| 11 | 2, 5, 10 | mp2an 692 | . . . 4 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) |
| 12 | reex 11166 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 13 | txrest 23525 | . . . . . . 7 ⊢ ((((TopOpen‘ℂfld) ∈ Top ∧ (TopOpen‘ℂfld) ∈ Top) ∧ (ℝ ∈ V ∧ ℝ ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ))) | |
| 14 | 6, 6, 12, 12, 13 | mp4an 693 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) |
| 15 | raddcn.1 | . . . . . . . 8 ⊢ 𝐽 = (topGen‘ran (,)) | |
| 16 | tgioo4 24700 | . . . . . . . 8 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 17 | 15, 16 | eqtr2i 2754 | . . . . . . 7 ⊢ ((TopOpen‘ℂfld) ↾t ℝ) = 𝐽 |
| 18 | 17, 17 | oveq12i 7402 | . . . . . 6 ⊢ (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 ×t 𝐽) |
| 19 | 14, 18 | eqtri 2753 | . . . . 5 ⊢ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (𝐽 ×t 𝐽) |
| 20 | 19 | oveq1i 7400 | . . . 4 ⊢ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) = ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) |
| 21 | 11, 20 | eleqtri 2827 | . . 3 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) |
| 22 | ax-addf 11154 | . . . . . . . . . 10 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 23 | ffn 6691 | . . . . . . . . . 10 ⊢ ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ)) | |
| 24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ + Fn (ℂ × ℂ) |
| 25 | fnssres 6644 | . . . . . . . . 9 ⊢ (( + Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)) | |
| 26 | 24, 5, 25 | mp2an 692 | . . . . . . . 8 ⊢ ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) |
| 27 | fnov 7523 | . . . . . . . 8 ⊢ (( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦))) | |
| 28 | 26, 27 | mpbi 230 | . . . . . . 7 ⊢ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) |
| 29 | ovres 7558 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥( + ↾ (ℝ × ℝ))𝑦) = (𝑥 + 𝑦)) | |
| 30 | 29 | mpoeq3ia 7470 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
| 31 | 28, 30 | eqtri 2753 | . . . . . 6 ⊢ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
| 32 | 31 | rneqi 5904 | . . . . 5 ⊢ ran ( + ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) |
| 33 | readdcl 11158 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) | |
| 34 | 33 | rgen2 3178 | . . . . . 6 ⊢ ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ |
| 35 | eqid 2730 | . . . . . . 7 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) | |
| 36 | 35 | rnmposs 32605 | . . . . . 6 ⊢ (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ) |
| 37 | 34, 36 | ax-mp 5 | . . . . 5 ⊢ ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ |
| 38 | 32, 37 | eqsstri 3996 | . . . 4 ⊢ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ |
| 39 | cnrest2 23180 | . . . 4 ⊢ (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)))) | |
| 40 | 7, 38, 3, 39 | mp3an 1463 | . . 3 ⊢ (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ))) |
| 41 | 21, 40 | mpbi 230 | . 2 ⊢ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) |
| 42 | 17 | oveq2i 7401 | . 2 ⊢ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = ((𝐽 ×t 𝐽) Cn 𝐽) |
| 43 | 41, 31, 42 | 3eltr3i 2841 | 1 ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 × cxp 5639 ran crn 5642 ↾ cres 5643 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ℂcc 11073 ℝcr 11074 + caddc 11078 (,)cioo 13313 ↾t crest 17390 TopOpenctopn 17391 topGenctg 17407 ℂfldccnfld 21271 Topctop 22787 TopOnctopon 22804 Cn ccn 23118 ×t ctx 23454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cn 23121 df-cnp 23122 df-tx 23456 df-hmeo 23649 df-xms 24215 df-ms 24216 df-tms 24217 |
| This theorem is referenced by: rrvadd 34450 |
| Copyright terms: Public domain | W3C validator |