Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  raddcn Structured version   Visualization version   GIF version

Theorem raddcn 32510
Description: Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.)
Hypothesis
Ref Expression
raddcn.1 𝐽 = (topGen‘ran (,))
Assertion
Ref Expression
raddcn (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐽(𝑥,𝑦)

Proof of Theorem raddcn
StepHypRef Expression
1 eqid 2736 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21addcn 24228 . . . . 5 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
3 ax-resscn 11108 . . . . . 6 ℝ ⊆ ℂ
4 xpss12 5648 . . . . . 6 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
53, 3, 4mp2an 690 . . . . 5 (ℝ × ℝ) ⊆ (ℂ × ℂ)
61cnfldtop 24147 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
71cnfldtopon 24146 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
87toponunii 22265 . . . . . . 7 ℂ = (TopOpen‘ℂfld)
96, 6, 8, 8txunii 22944 . . . . . 6 (ℂ × ℂ) = ((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld))
109cnrest 22636 . . . . 5 (( + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)))
112, 5, 10mp2an 690 . . . 4 ( + ↾ (ℝ × ℝ)) ∈ ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld))
12 reex 11142 . . . . . . 7 ℝ ∈ V
13 txrest 22982 . . . . . . 7 ((((TopOpen‘ℂfld) ∈ Top ∧ (TopOpen‘ℂfld) ∈ Top) ∧ (ℝ ∈ V ∧ ℝ ∈ V)) → (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)))
146, 6, 12, 12, 13mp4an 691 . . . . . 6 (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ))
15 raddcn.1 . . . . . . . 8 𝐽 = (topGen‘ran (,))
161tgioo2 24166 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
1715, 16eqtr2i 2765 . . . . . . 7 ((TopOpen‘ℂfld) ↾t ℝ) = 𝐽
1817, 17oveq12i 7369 . . . . . 6 (((TopOpen‘ℂfld) ↾t ℝ) ×t ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 ×t 𝐽)
1914, 18eqtri 2764 . . . . 5 (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) = (𝐽 ×t 𝐽)
2019oveq1i 7367 . . . 4 ((((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) ↾t (ℝ × ℝ)) Cn (TopOpen‘ℂfld)) = ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld))
2111, 20eleqtri 2836 . . 3 ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld))
22 ax-addf 11130 . . . . . . . . . 10 + :(ℂ × ℂ)⟶ℂ
23 ffn 6668 . . . . . . . . . 10 ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ))
2422, 23ax-mp 5 . . . . . . . . 9 + Fn (ℂ × ℂ)
25 fnssres 6624 . . . . . . . . 9 (( + Fn (ℂ × ℂ) ∧ (ℝ × ℝ) ⊆ (ℂ × ℂ)) → ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ))
2624, 5, 25mp2an 690 . . . . . . . 8 ( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ)
27 fnov 7487 . . . . . . . 8 (( + ↾ (ℝ × ℝ)) Fn (ℝ × ℝ) ↔ ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)))
2826, 27mpbi 229 . . . . . . 7 ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦))
29 ovres 7520 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥( + ↾ (ℝ × ℝ))𝑦) = (𝑥 + 𝑦))
3029mpoeq3ia 7435 . . . . . . 7 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥( + ↾ (ℝ × ℝ))𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦))
3128, 30eqtri 2764 . . . . . 6 ( + ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦))
3231rneqi 5892 . . . . 5 ran ( + ↾ (ℝ × ℝ)) = ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦))
33 readdcl 11134 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
3433rgen2 3194 . . . . . 6 𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ
35 eqid 2736 . . . . . . 7 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦))
3635rnmposs 31590 . . . . . 6 (∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 + 𝑦) ∈ ℝ → ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ)
3734, 36ax-mp 5 . . . . 5 ran (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ⊆ ℝ
3832, 37eqsstri 3978 . . . 4 ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ
39 cnrest2 22637 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ( + ↾ (ℝ × ℝ)) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
407, 38, 3, 39mp3an 1461 . . 3 (( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn (TopOpen‘ℂfld)) ↔ ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
4121, 40mpbi 229 . 2 ( + ↾ (ℝ × ℝ)) ∈ ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ))
4217oveq2i 7368 . 2 ((𝐽 ×t 𝐽) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = ((𝐽 ×t 𝐽) Cn 𝐽)
4341, 31, 423eltr3i 2850 1 (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  wss 3910   × cxp 5631  ran crn 5634  cres 5635   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  cc 11049  cr 11050   + caddc 11054  (,)cioo 13264  t crest 17302  TopOpenctopn 17303  topGenctg 17319  fldccnfld 20796  Topctop 22242  TopOnctopon 22259   Cn ccn 22575   ×t ctx 22911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675
This theorem is referenced by:  rrvadd  33052
  Copyright terms: Public domain W3C validator