| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3eltr4i | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| 3eltr4i.1 | ⊢ 𝐴 ∈ 𝐵 |
| 3eltr4i.2 | ⊢ 𝐶 = 𝐴 |
| 3eltr4i.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3eltr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
| 2 | 3eltr4i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 3 | 3eltr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | eleqtrri 2827 | . 2 ⊢ 𝐴 ∈ 𝐷 |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 𝐶 ∈ 𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: oancom 9580 0r 11009 1sr 11010 m1r 11011 smndex1ibas 18809 recvs 25079 qcvs 25080 wlk2v2elem1 30134 konigsbergiedgw 30227 lmxrge0 33935 brsigarn 34167 ex-sategoelel12 35407 sinccvglem 35652 bj-minftyccb 37206 resuppsinopn 42344 omcl3g 43316 fouriersw 46222 |
| Copyright terms: Public domain | W3C validator |