MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4i Structured version   Visualization version   GIF version

Theorem 3eltr4i 2851
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4i.1 𝐴𝐵
3eltr4i.2 𝐶 = 𝐴
3eltr4i.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4i 𝐶𝐷

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4i.2 . 2 𝐶 = 𝐴
2 3eltr4i.1 . . 3 𝐴𝐵
3 3eltr4i.3 . . 3 𝐷 = 𝐵
42, 3eleqtrri 2837 . 2 𝐴𝐷
51, 4eqeltri 2834 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1781  df-cleq 2729  df-clel 2815
This theorem is referenced by:  oancom  9477  0r  10906  1sr  10907  m1r  10908  smndex1ibas  18606  recvs  24380  recvsOLD  24381  qcvs  24382  wlk2v2elem1  28627  konigsbergiedgw  28720  lmxrge0  32008  brsigarn  32258  ex-sategoelel12  33495  sinccvglem  33736  bj-minftyccb  35456  fouriersw  44016
  Copyright terms: Public domain W3C validator