Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eltr4i | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4i.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr4i.2 | ⊢ 𝐶 = 𝐴 |
3eltr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | eleqtrri 2837 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2729 df-clel 2815 |
This theorem is referenced by: oancom 9477 0r 10906 1sr 10907 m1r 10908 smndex1ibas 18606 recvs 24380 recvsOLD 24381 qcvs 24382 wlk2v2elem1 28627 konigsbergiedgw 28720 lmxrge0 32008 brsigarn 32258 ex-sategoelel12 33495 sinccvglem 33736 bj-minftyccb 35456 fouriersw 44016 |
Copyright terms: Public domain | W3C validator |