Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3eltr4i | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4i.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr4i.2 | ⊢ 𝐶 = 𝐴 |
3eltr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | eleqtrri 2838 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: oancom 9409 0r 10836 1sr 10837 m1r 10838 smndex1ibas 18539 recvs 24309 recvsOLD 24310 qcvs 24311 wlk2v2elem1 28519 konigsbergiedgw 28612 lmxrge0 31902 brsigarn 32152 ex-sategoelel12 33389 sinccvglem 33630 bj-minftyccb 35396 fouriersw 43772 |
Copyright terms: Public domain | W3C validator |