MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4i Structured version   Visualization version   GIF version

Theorem 3eltr4i 2852
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4i.1 𝐴𝐵
3eltr4i.2 𝐶 = 𝐴
3eltr4i.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4i 𝐶𝐷

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4i.2 . 2 𝐶 = 𝐴
2 3eltr4i.1 . . 3 𝐴𝐵
3 3eltr4i.3 . . 3 𝐷 = 𝐵
42, 3eleqtrri 2838 . 2 𝐴𝐷
51, 4eqeltri 2835 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817
This theorem is referenced by:  oancom  9339  0r  10767  1sr  10768  m1r  10769  smndex1ibas  18454  recvs  24215  qcvs  24216  wlk2v2elem1  28420  konigsbergiedgw  28513  lmxrge0  31804  brsigarn  32052  ex-sategoelel12  33289  sinccvglem  33530  bj-minftyccb  35323  fouriersw  43662
  Copyright terms: Public domain W3C validator