![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr4i | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4i.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr4i.2 | ⊢ 𝐶 = 𝐴 |
3eltr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | eleqtrri 2837 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: oancom 9688 0r 11117 1sr 11118 m1r 11119 smndex1ibas 18925 recvs 25192 recvsOLD 25193 qcvs 25194 wlk2v2elem1 30183 konigsbergiedgw 30276 lmxrge0 33912 brsigarn 34164 ex-sategoelel12 35411 sinccvglem 35656 bj-minftyccb 37207 omcl3g 43323 fouriersw 46186 |
Copyright terms: Public domain | W3C validator |