MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4i Structured version   Visualization version   GIF version

Theorem 3eltr4i 2844
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4i.1 𝐴𝐵
3eltr4i.2 𝐶 = 𝐴
3eltr4i.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4i 𝐶𝐷

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4i.2 . 2 𝐶 = 𝐴
2 3eltr4i.1 . . 3 𝐴𝐵
3 3eltr4i.3 . . 3 𝐷 = 𝐵
42, 3eleqtrri 2830 . 2 𝐴𝐷
51, 4eqeltri 2827 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-cleq 2722  df-clel 2808
This theorem is referenced by:  oancom  9648  0r  11077  1sr  11078  m1r  11079  smndex1ibas  18817  recvs  24893  recvsOLD  24894  qcvs  24895  wlk2v2elem1  29675  konigsbergiedgw  29768  lmxrge0  33230  brsigarn  33480  ex-sategoelel12  34716  sinccvglem  34955  bj-minftyccb  36409  omcl3g  42386  fouriersw  45245
  Copyright terms: Public domain W3C validator