MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4i Structured version   Visualization version   GIF version

Theorem 3eltr4i 2857
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4i.1 𝐴𝐵
3eltr4i.2 𝐶 = 𝐴
3eltr4i.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4i 𝐶𝐷

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4i.2 . 2 𝐶 = 𝐴
2 3eltr4i.1 . . 3 𝐴𝐵
3 3eltr4i.3 . . 3 𝐷 = 𝐵
42, 3eleqtrri 2843 . 2 𝐴𝐷
51, 4eqeltri 2840 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-clel 2819
This theorem is referenced by:  oancom  9720  0r  11149  1sr  11150  m1r  11151  smndex1ibas  18935  recvs  25198  recvsOLD  25199  qcvs  25200  wlk2v2elem1  30187  konigsbergiedgw  30280  lmxrge0  33898  brsigarn  34148  ex-sategoelel12  35395  sinccvglem  35640  bj-minftyccb  37191  omcl3g  43296  fouriersw  46152
  Copyright terms: Public domain W3C validator