![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr4i | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4i.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr4i.2 | ⊢ 𝐶 = 𝐴 |
3eltr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | eleqtrri 2830 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltri 2827 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-clel 2808 |
This theorem is referenced by: oancom 9648 0r 11077 1sr 11078 m1r 11079 smndex1ibas 18817 recvs 24893 recvsOLD 24894 qcvs 24895 wlk2v2elem1 29675 konigsbergiedgw 29768 lmxrge0 33230 brsigarn 33480 ex-sategoelel12 34716 sinccvglem 34955 bj-minftyccb 36409 omcl3g 42386 fouriersw 45245 |
Copyright terms: Public domain | W3C validator |