![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3eltr4i | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
3eltr4i.1 | ⊢ 𝐴 ∈ 𝐵 |
3eltr4i.2 | ⊢ 𝐶 = 𝐴 |
3eltr4i.3 | ⊢ 𝐷 = 𝐵 |
Ref | Expression |
---|---|
3eltr4i | ⊢ 𝐶 ∈ 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3eltr4i.2 | . 2 ⊢ 𝐶 = 𝐴 | |
2 | 3eltr4i.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
3 | 3eltr4i.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
4 | 2, 3 | eleqtrri 2843 | . 2 ⊢ 𝐴 ∈ 𝐷 |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 𝐶 ∈ 𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: oancom 9720 0r 11149 1sr 11150 m1r 11151 smndex1ibas 18935 recvs 25198 recvsOLD 25199 qcvs 25200 wlk2v2elem1 30187 konigsbergiedgw 30280 lmxrge0 33898 brsigarn 34148 ex-sategoelel12 35395 sinccvglem 35640 bj-minftyccb 37191 omcl3g 43296 fouriersw 46152 |
Copyright terms: Public domain | W3C validator |