MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3eltr4i Structured version   Visualization version   GIF version

Theorem 3eltr4i 2852
Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4i.1 𝐴𝐵
3eltr4i.2 𝐶 = 𝐴
3eltr4i.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4i 𝐶𝐷

Proof of Theorem 3eltr4i
StepHypRef Expression
1 3eltr4i.2 . 2 𝐶 = 𝐴
2 3eltr4i.1 . . 3 𝐴𝐵
3 3eltr4i.3 . . 3 𝐷 = 𝐵
42, 3eleqtrri 2838 . 2 𝐴𝐷
51, 4eqeltri 2835 1 𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-clel 2816
This theorem is referenced by:  oancom  9409  0r  10836  1sr  10837  m1r  10838  smndex1ibas  18539  recvs  24309  recvsOLD  24310  qcvs  24311  wlk2v2elem1  28519  konigsbergiedgw  28612  lmxrge0  31902  brsigarn  32152  ex-sategoelel12  33389  sinccvglem  33630  bj-minftyccb  35396  fouriersw  43772
  Copyright terms: Public domain W3C validator