| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtri.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eleqtrri 2827 3eltr3i 2840 prid2 4727 2eluzge0 12840 faclbnd4lem1 14258 cats1fv 14825 bpoly2 16023 bpoly3 16024 bpoly4 16025 ef0lem 16044 phi1 16743 gsumws1 18765 lt6abl 19825 uvcvvcl 21696 mhpvarcl 22035 smadiadetlem4 22556 indiscld 22978 cnrehmeo 24851 cnrehmeoOLD 24852 ovolicc1 25417 dvcjbr 25853 vieta1lem2 26219 dvloglem 26557 logdmopn 26558 efopnlem2 26566 cxpcn 26654 cxpcnOLD 26655 loglesqrt 26671 log2ublem2 26857 efrlim 26879 efrlimOLD 26880 precsexlem11 28119 tgcgr4 28458 axlowdimlem16 28884 axlowdimlem17 28885 nlelchi 31990 hmopidmchi 32080 indf 32778 evl1deg2 33546 evl1deg3 33547 raddcn 33919 xrge0tmd 33935 ballotlem1ri 34526 chtvalz 34620 circlemethhgt 34634 dvtanlem 37663 ftc1cnnc 37686 dvasin 37698 dvacos 37699 dvreasin 37700 dvreacos 37701 areacirclem2 37703 areacirclem4 37705 cncfres 37759 resuppsinopn 42351 jm2.23 42985 0finon 43437 1finon 43438 2finon 43439 3finon 43440 4finon 43441 fvnonrel 43586 frege54cor1c 43904 fourierdlem28 46133 fourierdlem57 46161 fourierdlem59 46163 fourierdlem62 46166 fourierdlem68 46172 fouriersw 46229 etransclem23 46255 etransclem35 46267 etransclem38 46270 etransclem39 46271 etransclem44 46276 etransclem45 46277 etransclem47 46279 rrxtopn0 46291 hoidmvlelem2 46594 vonicclem2 46682 fmtno4prmfac 47573 gpg5grlic 48084 |
| Copyright terms: Public domain | W3C validator |