| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtri.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: eleqtrri 2828 3eltr3i 2841 prid2 4730 2eluzge0 12847 faclbnd4lem1 14265 cats1fv 14832 bpoly2 16030 bpoly3 16031 bpoly4 16032 ef0lem 16051 phi1 16750 gsumws1 18772 lt6abl 19832 uvcvvcl 21703 mhpvarcl 22042 smadiadetlem4 22563 indiscld 22985 cnrehmeo 24858 cnrehmeoOLD 24859 ovolicc1 25424 dvcjbr 25860 vieta1lem2 26226 dvloglem 26564 logdmopn 26565 efopnlem2 26573 cxpcn 26661 cxpcnOLD 26662 loglesqrt 26678 log2ublem2 26864 efrlim 26886 efrlimOLD 26887 precsexlem11 28126 tgcgr4 28465 axlowdimlem16 28891 axlowdimlem17 28892 nlelchi 31997 hmopidmchi 32087 indf 32785 evl1deg2 33553 evl1deg3 33554 raddcn 33926 xrge0tmd 33942 ballotlem1ri 34533 chtvalz 34627 circlemethhgt 34641 dvtanlem 37670 ftc1cnnc 37693 dvasin 37705 dvacos 37706 dvreasin 37707 dvreacos 37708 areacirclem2 37710 areacirclem4 37712 cncfres 37766 resuppsinopn 42358 jm2.23 42992 0finon 43444 1finon 43445 2finon 43446 3finon 43447 4finon 43448 fvnonrel 43593 frege54cor1c 43911 fourierdlem28 46140 fourierdlem57 46168 fourierdlem59 46170 fourierdlem62 46173 fourierdlem68 46179 fouriersw 46236 etransclem23 46262 etransclem35 46274 etransclem38 46277 etransclem39 46278 etransclem44 46283 etransclem45 46284 etransclem47 46286 rrxtopn0 46298 hoidmvlelem2 46601 vonicclem2 46689 fmtno4prmfac 47577 gpg5grlic 48088 |
| Copyright terms: Public domain | W3C validator |