| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtri.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eleqtrri 2827 3eltr3i 2840 prid2 4715 2eluzge0 12782 faclbnd4lem1 14200 cats1fv 14766 bpoly2 15964 bpoly3 15965 bpoly4 15966 ef0lem 15985 phi1 16684 gsumws1 18712 lt6abl 19774 uvcvvcl 21694 mhpvarcl 22033 smadiadetlem4 22554 indiscld 22976 cnrehmeo 24849 cnrehmeoOLD 24850 ovolicc1 25415 dvcjbr 25851 vieta1lem2 26217 dvloglem 26555 logdmopn 26556 efopnlem2 26564 cxpcn 26652 cxpcnOLD 26653 loglesqrt 26669 log2ublem2 26855 efrlim 26877 efrlimOLD 26878 precsexlem11 28124 tgcgr4 28476 axlowdimlem16 28902 axlowdimlem17 28903 nlelchi 32005 hmopidmchi 32095 indf 32798 evl1deg2 33512 evl1deg3 33513 raddcn 33896 xrge0tmd 33912 ballotlem1ri 34503 chtvalz 34597 circlemethhgt 34611 dvtanlem 37649 ftc1cnnc 37672 dvasin 37684 dvacos 37685 dvreasin 37686 dvreacos 37687 areacirclem2 37689 areacirclem4 37691 cncfres 37745 resuppsinopn 42336 jm2.23 42969 0finon 43421 1finon 43422 2finon 43423 3finon 43424 4finon 43425 fvnonrel 43570 frege54cor1c 43888 fourierdlem28 46116 fourierdlem57 46144 fourierdlem59 46146 fourierdlem62 46149 fourierdlem68 46155 fouriersw 46212 etransclem23 46238 etransclem35 46250 etransclem38 46253 etransclem39 46254 etransclem44 46259 etransclem45 46260 etransclem47 46262 rrxtopn0 46274 hoidmvlelem2 46577 vonicclem2 46665 fmtno4prmfac 47556 gpg5grlim 48077 gpg5grlic 48078 |
| Copyright terms: Public domain | W3C validator |