Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtri.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2842 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 233 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-cleq 2751 df-clel 2831 |
This theorem is referenced by: eleqtrri 2850 3eltr3i 2863 prid2 4649 2eluzge0 12318 fz0to4untppr 13044 faclbnd4lem1 13688 cats1fv 14253 bpoly2 15444 bpoly3 15445 bpoly4 15446 ef0lem 15465 phi1 16150 gsumws1 18053 lt6abl 19068 uvcvvcl 20537 mhpvarcl 20876 smadiadetlem4 21354 indiscld 21776 cnrehmeo 23639 ovolicc1 24201 dvcjbr 24633 vieta1lem2 24991 dvloglem 25323 logdmopn 25324 efopnlem2 25332 cxpcn 25418 loglesqrt 25431 log2ublem2 25617 efrlim 25639 tgcgr4 26409 axlowdimlem16 26835 axlowdimlem17 26836 nlelchi 29928 hmopidmchi 30018 raddcn 31385 xrge0tmd 31401 indf 31487 ballotlem1ri 32005 chtvalz 32113 circlemethhgt 32127 dvtanlem 35371 ftc1cnnc 35394 dvasin 35406 dvacos 35407 dvreasin 35408 dvreacos 35409 areacirclem2 35411 areacirclem4 35413 cncfres 35468 jm2.23 40295 fvnonrel 40655 frege54cor1c 40974 fourierdlem28 43128 fourierdlem57 43156 fourierdlem59 43158 fourierdlem62 43161 fourierdlem68 43167 fouriersw 43224 etransclem23 43250 etransclem35 43262 etransclem38 43265 etransclem39 43266 etransclem44 43271 etransclem45 43272 etransclem47 43274 rrxtopn0 43286 hoidmvlelem2 43586 vonicclem2 43674 fmtno4prmfac 44442 |
Copyright terms: Public domain | W3C validator |