| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtri.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2820 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: eleqtrri 2827 3eltr3i 2840 prid2 4723 2eluzge0 12816 faclbnd4lem1 14234 cats1fv 14801 bpoly2 15999 bpoly3 16000 bpoly4 16001 ef0lem 16020 phi1 16719 gsumws1 18741 lt6abl 19801 uvcvvcl 21672 mhpvarcl 22011 smadiadetlem4 22532 indiscld 22954 cnrehmeo 24827 cnrehmeoOLD 24828 ovolicc1 25393 dvcjbr 25829 vieta1lem2 26195 dvloglem 26533 logdmopn 26534 efopnlem2 26542 cxpcn 26630 cxpcnOLD 26631 loglesqrt 26647 log2ublem2 26833 efrlim 26855 efrlimOLD 26856 precsexlem11 28095 tgcgr4 28434 axlowdimlem16 28860 axlowdimlem17 28861 nlelchi 31963 hmopidmchi 32053 indf 32751 evl1deg2 33519 evl1deg3 33520 raddcn 33892 xrge0tmd 33908 ballotlem1ri 34499 chtvalz 34593 circlemethhgt 34607 dvtanlem 37636 ftc1cnnc 37659 dvasin 37671 dvacos 37672 dvreasin 37673 dvreacos 37674 areacirclem2 37676 areacirclem4 37678 cncfres 37732 resuppsinopn 42324 jm2.23 42958 0finon 43410 1finon 43411 2finon 43412 3finon 43413 4finon 43414 fvnonrel 43559 frege54cor1c 43877 fourierdlem28 46106 fourierdlem57 46134 fourierdlem59 46136 fourierdlem62 46139 fourierdlem68 46145 fouriersw 46202 etransclem23 46228 etransclem35 46240 etransclem38 46243 etransclem39 46244 etransclem44 46249 etransclem45 46250 etransclem47 46252 rrxtopn0 46264 hoidmvlelem2 46567 vonicclem2 46655 fmtno4prmfac 47546 gpg5grlic 48057 |
| Copyright terms: Public domain | W3C validator |