Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtri.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 229 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: eleqtrri 2838 3eltr3i 2851 prid2 4699 2eluzge0 12633 fz0to4untppr 13359 faclbnd4lem1 14007 cats1fv 14572 bpoly2 15767 bpoly3 15768 bpoly4 15769 ef0lem 15788 phi1 16474 gsumws1 18476 lt6abl 19496 uvcvvcl 20994 mhpvarcl 21338 smadiadetlem4 21818 indiscld 22242 cnrehmeo 24116 ovolicc1 24680 dvcjbr 25113 vieta1lem2 25471 dvloglem 25803 logdmopn 25804 efopnlem2 25812 cxpcn 25898 loglesqrt 25911 log2ublem2 26097 efrlim 26119 tgcgr4 26892 axlowdimlem16 27325 axlowdimlem17 27326 nlelchi 30423 hmopidmchi 30513 raddcn 31879 xrge0tmd 31895 indf 31983 ballotlem1ri 32501 chtvalz 32609 circlemethhgt 32623 dvtanlem 35826 ftc1cnnc 35849 dvasin 35861 dvacos 35862 dvreasin 35863 dvreacos 35864 areacirclem2 35866 areacirclem4 35868 cncfres 35923 jm2.23 40818 0finon 41055 1finon 41056 2finon 41057 3finon 41058 4finon 41059 fvnonrel 41205 frege54cor1c 41523 fourierdlem28 43676 fourierdlem57 43704 fourierdlem59 43706 fourierdlem62 43709 fourierdlem68 43715 fouriersw 43772 etransclem23 43798 etransclem35 43810 etransclem38 43813 etransclem39 43814 etransclem44 43819 etransclem45 43820 etransclem47 43822 rrxtopn0 43834 hoidmvlelem2 44134 vonicclem2 44222 fmtno4prmfac 45024 |
Copyright terms: Public domain | W3C validator |