| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtri.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2823 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: eleqtrri 2830 3eltr3i 2843 prid2 4711 2eluzge0 12774 faclbnd4lem1 14195 cats1fv 14761 bpoly2 15959 bpoly3 15960 bpoly4 15961 ef0lem 15980 phi1 16679 gsumws1 18741 lt6abl 19802 uvcvvcl 21719 mhpvarcl 22058 smadiadetlem4 22579 indiscld 23001 cnrehmeo 24873 cnrehmeoOLD 24874 ovolicc1 25439 dvcjbr 25875 vieta1lem2 26241 dvloglem 26579 logdmopn 26580 efopnlem2 26588 cxpcn 26676 cxpcnOLD 26677 loglesqrt 26693 log2ublem2 26879 efrlim 26901 efrlimOLD 26902 precsexlem11 28150 tgcgr4 28504 axlowdimlem16 28930 axlowdimlem17 28931 nlelchi 32033 hmopidmchi 32123 indf 32828 evl1deg2 33532 evl1deg3 33533 raddcn 33934 xrge0tmd 33950 ballotlem1ri 34540 chtvalz 34634 circlemethhgt 34648 dvtanlem 37709 ftc1cnnc 37732 dvasin 37744 dvacos 37745 dvreasin 37746 dvreacos 37747 areacirclem2 37749 areacirclem4 37751 cncfres 37805 resuppsinopn 42396 jm2.23 43029 0finon 43481 1finon 43482 2finon 43483 3finon 43484 4finon 43485 fvnonrel 43630 frege54cor1c 43948 fourierdlem28 46173 fourierdlem57 46201 fourierdlem59 46203 fourierdlem62 46206 fourierdlem68 46212 fouriersw 46269 etransclem23 46295 etransclem35 46307 etransclem38 46310 etransclem39 46311 etransclem44 46316 etransclem45 46317 etransclem47 46319 rrxtopn0 46331 hoidmvlelem2 46634 vonicclem2 46722 fmtno4prmfac 47603 gpg5grlim 48124 gpg5grlic 48125 |
| Copyright terms: Public domain | W3C validator |