![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtri.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2836 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: eleqtrri 2843 3eltr3i 2856 prid2 4788 2eluzge0 12958 faclbnd4lem1 14342 cats1fv 14908 bpoly2 16105 bpoly3 16106 bpoly4 16107 ef0lem 16126 phi1 16820 gsumws1 18873 lt6abl 19937 uvcvvcl 21830 mhpvarcl 22175 smadiadetlem4 22696 indiscld 23120 cnrehmeo 25003 cnrehmeoOLD 25004 ovolicc1 25570 dvcjbr 26007 vieta1lem2 26371 dvloglem 26708 logdmopn 26709 efopnlem2 26717 cxpcn 26805 cxpcnOLD 26806 loglesqrt 26822 log2ublem2 27008 efrlim 27030 efrlimOLD 27031 precsexlem11 28259 tgcgr4 28557 axlowdimlem16 28990 axlowdimlem17 28991 nlelchi 32093 hmopidmchi 32183 evl1deg2 33567 evl1deg3 33568 raddcn 33875 xrge0tmd 33891 indf 33979 ballotlem1ri 34499 chtvalz 34606 circlemethhgt 34620 dvtanlem 37629 ftc1cnnc 37652 dvasin 37664 dvacos 37665 dvreasin 37666 dvreacos 37667 areacirclem2 37669 areacirclem4 37671 cncfres 37725 jm2.23 42953 0finon 43410 1finon 43411 2finon 43412 3finon 43413 4finon 43414 fvnonrel 43559 frege54cor1c 43877 fourierdlem28 46056 fourierdlem57 46084 fourierdlem59 46086 fourierdlem62 46089 fourierdlem68 46095 fouriersw 46152 etransclem23 46178 etransclem35 46190 etransclem38 46193 etransclem39 46194 etransclem44 46199 etransclem45 46200 etransclem47 46202 rrxtopn0 46214 hoidmvlelem2 46517 vonicclem2 46605 fmtno4prmfac 47446 |
Copyright terms: Public domain | W3C validator |