| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtri.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2826 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: eleqtrri 2833 3eltr3i 2846 prid2 4739 2eluzge0 12909 faclbnd4lem1 14311 cats1fv 14878 bpoly2 16073 bpoly3 16074 bpoly4 16075 ef0lem 16094 phi1 16792 gsumws1 18816 lt6abl 19876 uvcvvcl 21747 mhpvarcl 22086 smadiadetlem4 22607 indiscld 23029 cnrehmeo 24902 cnrehmeoOLD 24903 ovolicc1 25469 dvcjbr 25905 vieta1lem2 26271 dvloglem 26609 logdmopn 26610 efopnlem2 26618 cxpcn 26706 cxpcnOLD 26707 loglesqrt 26723 log2ublem2 26909 efrlim 26931 efrlimOLD 26932 precsexlem11 28171 tgcgr4 28510 axlowdimlem16 28936 axlowdimlem17 28937 nlelchi 32042 hmopidmchi 32132 indf 32832 evl1deg2 33590 evl1deg3 33591 raddcn 33960 xrge0tmd 33976 ballotlem1ri 34567 chtvalz 34661 circlemethhgt 34675 dvtanlem 37693 ftc1cnnc 37716 dvasin 37728 dvacos 37729 dvreasin 37730 dvreacos 37731 areacirclem2 37733 areacirclem4 37735 cncfres 37789 resuppsinopn 42406 jm2.23 43020 0finon 43472 1finon 43473 2finon 43474 3finon 43475 4finon 43476 fvnonrel 43621 frege54cor1c 43939 fourierdlem28 46164 fourierdlem57 46192 fourierdlem59 46194 fourierdlem62 46197 fourierdlem68 46203 fouriersw 46260 etransclem23 46286 etransclem35 46298 etransclem38 46301 etransclem39 46302 etransclem44 46307 etransclem45 46308 etransclem47 46310 rrxtopn0 46322 hoidmvlelem2 46625 vonicclem2 46713 fmtno4prmfac 47586 gpg5grlic 48093 |
| Copyright terms: Public domain | W3C validator |