| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
| eleqtri.2 | ⊢ 𝐵 = 𝐶 |
| Ref | Expression |
|---|---|
| eleqtri | ⊢ 𝐴 ∈ 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
| 3 | 2 | eleq2i 2825 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
| 4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: eleqtrri 2832 3eltr3i 2845 prid2 4717 2eluzge0 12785 faclbnd4lem1 14207 cats1fv 14773 bpoly2 15971 bpoly3 15972 bpoly4 15973 ef0lem 15992 phi1 16691 gsumws1 18754 lt6abl 19815 uvcvvcl 21733 mhpvarcl 22082 smadiadetlem4 22604 indiscld 23026 cnrehmeo 24898 cnrehmeoOLD 24899 ovolicc1 25464 dvcjbr 25900 vieta1lem2 26266 dvloglem 26604 logdmopn 26605 efopnlem2 26613 cxpcn 26701 cxpcnOLD 26702 loglesqrt 26718 log2ublem2 26904 efrlim 26926 efrlimOLD 26927 precsexlem11 28175 tgcgr4 28529 axlowdimlem16 28956 axlowdimlem17 28957 nlelchi 32062 hmopidmchi 32152 indf 32862 evl1deg2 33586 evl1deg3 33587 raddcn 34014 xrge0tmd 34030 ballotlem1ri 34620 chtvalz 34714 circlemethhgt 34728 dvtanlem 37782 ftc1cnnc 37805 dvasin 37817 dvacos 37818 dvreasin 37819 dvreacos 37820 areacirclem2 37822 areacirclem4 37824 cncfres 37878 resuppsinopn 42533 jm2.23 43153 0finon 43605 1finon 43606 2finon 43607 3finon 43608 4finon 43609 fvnonrel 43754 frege54cor1c 44072 fourierdlem28 46295 fourierdlem57 46323 fourierdlem59 46325 fourierdlem62 46328 fourierdlem68 46334 fouriersw 46391 etransclem23 46417 etransclem35 46429 etransclem38 46432 etransclem39 46433 etransclem44 46438 etransclem45 46439 etransclem47 46441 rrxtopn0 46453 hoidmvlelem2 46756 vonicclem2 46844 fmtno4prmfac 47734 gpg5grlim 48255 gpg5grlic 48256 |
| Copyright terms: Public domain | W3C validator |