Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtri.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 229 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: eleqtrri 2838 3eltr3i 2851 prid2 4696 2eluzge0 12562 fz0to4untppr 13288 faclbnd4lem1 13935 cats1fv 14500 bpoly2 15695 bpoly3 15696 bpoly4 15697 ef0lem 15716 phi1 16402 gsumws1 18391 lt6abl 19411 uvcvvcl 20904 mhpvarcl 21248 smadiadetlem4 21726 indiscld 22150 cnrehmeo 24022 ovolicc1 24585 dvcjbr 25018 vieta1lem2 25376 dvloglem 25708 logdmopn 25709 efopnlem2 25717 cxpcn 25803 loglesqrt 25816 log2ublem2 26002 efrlim 26024 tgcgr4 26796 axlowdimlem16 27228 axlowdimlem17 27229 nlelchi 30324 hmopidmchi 30414 raddcn 31781 xrge0tmd 31797 indf 31883 ballotlem1ri 32401 chtvalz 32509 circlemethhgt 32523 dvtanlem 35753 ftc1cnnc 35776 dvasin 35788 dvacos 35789 dvreasin 35790 dvreacos 35791 areacirclem2 35793 areacirclem4 35795 cncfres 35850 jm2.23 40734 fvnonrel 41094 frege54cor1c 41412 fourierdlem28 43566 fourierdlem57 43594 fourierdlem59 43596 fourierdlem62 43599 fourierdlem68 43605 fouriersw 43662 etransclem23 43688 etransclem35 43700 etransclem38 43703 etransclem39 43704 etransclem44 43709 etransclem45 43710 etransclem47 43712 rrxtopn0 43724 hoidmvlelem2 44024 vonicclem2 44112 fmtno4prmfac 44912 |
Copyright terms: Public domain | W3C validator |