![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtri.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 230 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-clel 2814 |
This theorem is referenced by: eleqtrri 2838 3eltr3i 2851 prid2 4768 2eluzge0 12933 faclbnd4lem1 14329 cats1fv 14895 bpoly2 16090 bpoly3 16091 bpoly4 16092 ef0lem 16111 phi1 16807 gsumws1 18864 lt6abl 19928 uvcvvcl 21825 mhpvarcl 22170 smadiadetlem4 22691 indiscld 23115 cnrehmeo 24998 cnrehmeoOLD 24999 ovolicc1 25565 dvcjbr 26002 vieta1lem2 26368 dvloglem 26705 logdmopn 26706 efopnlem2 26714 cxpcn 26802 cxpcnOLD 26803 loglesqrt 26819 log2ublem2 27005 efrlim 27027 efrlimOLD 27028 precsexlem11 28256 tgcgr4 28554 axlowdimlem16 28987 axlowdimlem17 28988 nlelchi 32090 hmopidmchi 32180 evl1deg2 33582 evl1deg3 33583 raddcn 33890 xrge0tmd 33906 indf 33996 ballotlem1ri 34516 chtvalz 34623 circlemethhgt 34637 dvtanlem 37656 ftc1cnnc 37679 dvasin 37691 dvacos 37692 dvreasin 37693 dvreacos 37694 areacirclem2 37696 areacirclem4 37698 cncfres 37752 jm2.23 42985 0finon 43438 1finon 43439 2finon 43440 3finon 43441 4finon 43442 fvnonrel 43587 frege54cor1c 43905 fourierdlem28 46091 fourierdlem57 46119 fourierdlem59 46121 fourierdlem62 46124 fourierdlem68 46130 fouriersw 46187 etransclem23 46213 etransclem35 46225 etransclem38 46228 etransclem39 46229 etransclem44 46234 etransclem45 46235 etransclem47 46237 rrxtopn0 46249 hoidmvlelem2 46552 vonicclem2 46640 fmtno4prmfac 47497 gpg5grlic 47975 |
Copyright terms: Public domain | W3C validator |