![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eleqtri | Structured version Visualization version GIF version |
Description: Substitution of equal classes into membership relation. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
eleqtri.1 | ⊢ 𝐴 ∈ 𝐵 |
eleqtri.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
eleqtri | ⊢ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtri.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | eleqtri.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | eleq2i 2898 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) |
4 | 1, 3 | mpbi 222 | 1 ⊢ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 df-cleq 2818 df-clel 2821 |
This theorem is referenced by: eleqtrri 2905 3eltr3i 2918 prid2 4516 2eluzge0 12015 fz0to4untppr 12737 seqp1i 13111 faclbnd4lem1 13373 cats1fv 13980 bpoly2 15160 bpoly3 15161 bpoly4 15162 ef0lem 15181 phi1 15849 gsumws1 17729 lt6abl 18649 uvcvvcl 20493 smadiadetlem4 20844 indiscld 21266 cnrehmeo 23122 ovolicc1 23682 dvcjbr 24111 vieta1lem2 24465 dvloglem 24793 logdmopn 24794 efopnlem2 24802 cxpcn 24888 loglesqrt 24901 log2ublem2 25087 efrlim 25109 tgcgr4 25843 axlowdimlem16 26256 axlowdimlem17 26257 nlelchi 29464 hmopidmchi 29554 raddcn 30509 xrge0tmd 30526 indf 30611 ballotlem1ri 31131 chtvalz 31245 circlemethhgt 31259 dvtanlem 33995 ftc1cnnc 34020 dvasin 34032 dvacos 34033 dvreasin 34034 dvreacos 34035 areacirclem2 34037 areacirclem4 34039 cncfres 34099 jm2.23 38399 fvnonrel 38737 frege54cor1c 39042 fourierdlem28 41139 fourierdlem57 41167 fourierdlem59 41169 fourierdlem62 41172 fourierdlem68 41178 fouriersw 41235 etransclem23 41261 etransclem35 41273 etransclem38 41276 etransclem39 41277 etransclem44 41282 etransclem45 41283 etransclem47 41285 rrxtopn0 41297 hoidmvlelem2 41597 vonicclem2 41685 fmtno4prmfac 42307 |
Copyright terms: Public domain | W3C validator |